Skip to main content

A Numpy and Numba based Python library for solving Constraint Satisfaction Problems over finite domains

Project description

NucS logo

pypi version pypi downloads

numba version numpy version

tests doc license

TLDR

NuCS is a Python library for solving Constraint Satisfaction and Optimization Problems. Because it is 100% written in Python, NuCS is easy to install and use. NuCS is also very fast because it is powered by Numpy and Numba.

Installation

pip install nucs

Documentation

Check out NUCS documentation.

With NuCS, in a few seconds you can ...

Find all 14200 solutions to the 12-queens problem

NUMBA_CACHE_DIR=.numba/cache PYTHONPATH=. python -m nucs.examples.queens -n 12
{
    'OPTIMIZER_SOLUTION_NB': 0,
    'PROBLEM_FILTER_NB': 262011,
    'PROBLEM_PROPAGATOR_NB': 3,
    'PROBLEM_VARIABLE_NB': 36,
    'PROPAGATOR_ENTAILMENT_NB': 0,
    'PROPAGATOR_FILTER_NB': 2269980,
    'PROPAGATOR_FILTER_NO_CHANGE_NB': 990450,
    'PROPAGATOR_INCONSISTENCY_NB': 116806,
    'SOLVER_BACKTRACK_NB': 131005,
    'SOLVER_CHOICE_NB': 131005,
    'SOLVER_CHOICE_DEPTH': 10,
    'SOLVER_SOLUTION_NB': 14200
}

Compute the 92 solutions to the BIBD(8,14,7,4,3) problem

NUMBA_CACHE_DIR=.numba/cache PYTHONPATH=. python -m nucs.examples.bibd -v 8 -b 14 -r 7 -k 4 -l 3 --symmetry_breaking
{
    'OPTIMIZER_SOLUTION_NB': 0,
    'PROBLEM_FILTER_NB': 2797,
    'PROBLEM_PROPAGATOR_NB': 462,
    'PROBLEM_VARIABLE_NB': 504,
    'PROPAGATOR_ENTAILMENT_NB': 5273,
    'PROPAGATOR_FILTER_NB': 562130,
    'PROPAGATOR_FILTER_NO_CHANGE_NB': 531724,
    'PROPAGATOR_INCONSISTENCY_NB': 1307,
    'SOLVER_BACKTRACK_NB': 1398,
    'SOLVER_CHOICE_NB': 1398,
    'SOLVER_CHOICE_DEPTH': 41,
    'SOLVER_SOLUTION_NB': 92
}

Demonstrate that the optimal 10-marks Golomb ruler length is 55

NUMBA_CACHE_DIR=.numba/cache PYTHONPATH=. python -m nucs.examples.golomb -n 10 --symmetry_breaking
{
    'OPTIMIZER_SOLUTION_NB': 10,
    'PROBLEM_FILTER_NB': 22886,
    'PROBLEM_PROPAGATOR_NB': 82,
    'PROBLEM_VARIABLE_NB': 45,
    'PROPAGATOR_ENTAILMENT_NB': 98080,
    'PROPAGATOR_FILTER_NB': 2843257,
    'PROPAGATOR_FILTER_NO_CHANGE_NB': 1806240,
    'PROPAGATOR_INCONSISTENCY_NB': 11406,
    'SOLVER_BACKTRACK_NB': 11405,
    'SOLVER_CHOICE_NB': 11470,
    'SOLVER_CHOICE_DEPTH': 9,
    'SOLVER_SOLUTION_NB': 10
}
[1, 6, 10, 23, 26, 34, 41, 53, 55]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nucs-1.0.0.tar.gz (36.4 kB view details)

Uploaded Source

Built Distribution

NUCS-1.0.0-py3-none-any.whl (86.9 kB view details)

Uploaded Python 3

File details

Details for the file nucs-1.0.0.tar.gz.

File metadata

  • Download URL: nucs-1.0.0.tar.gz
  • Upload date:
  • Size: 36.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for nucs-1.0.0.tar.gz
Algorithm Hash digest
SHA256 fdecced3cab212b0b5947f37586c9281e322b7bbc83f089e87e40e1f420ed9fb
MD5 0f5788beaf88f894d59d15debcc5ca3f
BLAKE2b-256 e0970dffe830e5c9b6245d328b3415c68dbf88a381746be3977969c7cd2d37a9

See more details on using hashes here.

File details

Details for the file NUCS-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: NUCS-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 86.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for NUCS-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2682080ab2ca631758cc0e5558f1318b9b3db37e010c0478f63fa0ece4c3ffe1
MD5 ff2650e451bf92bfb4a17d3b72d9adab
BLAKE2b-256 f3f20c679890b77d79244aed9fc55024e9be0f0a610caad18930a4934c4684dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page