Skip to main content

A Numpy and Numba based Python library for solving Constraint Satisfaction Problems over finite domains

Project description

NucS logo

pypi version pypi downloads

numba version numpy version

tests doc license

TLDR

NuCS is a Python library for solving Constraint Satisfaction and Optimization Problems. Because it is 100% written in Python, NuCS is easy to install and use. NuCS is also very fast because it is powered by Numpy and Numba.

Installation

pip install nucs

Documentation

Check out NUCS documentation.

With NuCS, in a few seconds you can ...

Find all 14200 solutions to the 12-queens problem

NUMBA_CACHE_DIR=.numba/cache PYTHONPATH=. python -m nucs.examples.queens -n 12
{
    'OPTIMIZER_SOLUTION_NB': 0,
    'PROBLEM_FILTER_NB': 262011,
    'PROBLEM_PROPAGATOR_NB': 3,
    'PROBLEM_VARIABLE_NB': 36,
    'PROPAGATOR_ENTAILMENT_NB': 0,
    'PROPAGATOR_FILTER_NB': 2269980,
    'PROPAGATOR_FILTER_NO_CHANGE_NB': 990450,
    'PROPAGATOR_INCONSISTENCY_NB': 116806,
    'SOLVER_BACKTRACK_NB': 131005,
    'SOLVER_CHOICE_NB': 131005,
    'SOLVER_CHOICE_DEPTH': 10,
    'SOLVER_SOLUTION_NB': 14200
}

Compute the 92 solutions to the BIBD(8,14,7,4,3) problem

NUMBA_CACHE_DIR=.numba/cache PYTHONPATH=. python -m nucs.examples.bibd -v 8 -b 14 -r 7 -k 4 -l 3 --symmetry_breaking
{
    'OPTIMIZER_SOLUTION_NB': 0,
    'PROBLEM_FILTER_NB': 2797,
    'PROBLEM_PROPAGATOR_NB': 462,
    'PROBLEM_VARIABLE_NB': 504,
    'PROPAGATOR_ENTAILMENT_NB': 5273,
    'PROPAGATOR_FILTER_NB': 562130,
    'PROPAGATOR_FILTER_NO_CHANGE_NB': 531724,
    'PROPAGATOR_INCONSISTENCY_NB': 1307,
    'SOLVER_BACKTRACK_NB': 1398,
    'SOLVER_CHOICE_NB': 1398,
    'SOLVER_CHOICE_DEPTH': 41,
    'SOLVER_SOLUTION_NB': 92
}

Demonstrate that the optimal 10-marks Golomb ruler length is 55

NUMBA_CACHE_DIR=.numba/cache PYTHONPATH=. python -m nucs.examples.golomb -n 10 --symmetry_breaking
{
    'OPTIMIZER_SOLUTION_NB': 10,
    'PROBLEM_FILTER_NB': 22886,
    'PROBLEM_PROPAGATOR_NB': 82,
    'PROBLEM_VARIABLE_NB': 45,
    'PROPAGATOR_ENTAILMENT_NB': 98080,
    'PROPAGATOR_FILTER_NB': 2843257,
    'PROPAGATOR_FILTER_NO_CHANGE_NB': 1806240,
    'PROPAGATOR_INCONSISTENCY_NB': 11406,
    'SOLVER_BACKTRACK_NB': 11405,
    'SOLVER_CHOICE_NB': 11470,
    'SOLVER_CHOICE_DEPTH': 9,
    'SOLVER_SOLUTION_NB': 10
}
[1, 6, 10, 23, 26, 34, 41, 53, 55]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nucs-1.1.0.tar.gz (38.5 kB view details)

Uploaded Source

Built Distribution

NUCS-1.1.0-py3-none-any.whl (90.5 kB view details)

Uploaded Python 3

File details

Details for the file nucs-1.1.0.tar.gz.

File metadata

  • Download URL: nucs-1.1.0.tar.gz
  • Upload date:
  • Size: 38.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for nucs-1.1.0.tar.gz
Algorithm Hash digest
SHA256 fa72b9942fe87f6972fb6a70af3a6ed8ffebfa644c3c26cd8a48b5fbfd31f9c8
MD5 7be1d9a327c21b0be3added63f68bd7c
BLAKE2b-256 21649ce143a15de721d3cae9100925d4a1e9535fcca5f385f7c0d932a36903fd

See more details on using hashes here.

File details

Details for the file NUCS-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: NUCS-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 90.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for NUCS-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1aa3c53042b6e72ca22d4a7dd8095f0b82ea528fe05d4e60e32b3fd3b26cd755
MD5 e3b6c75ba9b4a28e9cfc0d0ac7420390
BLAKE2b-256 ce39b3ed04a6bdaf4ff00d170b911cd42860677029c3b4929eaf2e45e06bbe5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page