Plotting suite for Oxford Nanopore sequencing data and alignments
Project description
NanoPlot
Plotting tool for long read sequencing data and alignments.
NanoPlot is also available as a web service.
The example plot above shows a bivariate plot comparing log transformed read length with average basecall Phred quality score. More examples can be found in the gallery on my blog 'Gigabase Or Gigabyte'.
In addition to various plots also a NanoStats file is created summarizing key features of the dataset.
This script performs data extraction from Oxford Nanopore sequencing data in the following formats:
- fastq files
(can be bgzip, bzip2 or gzip compressed) - fastq files generated by albacore, guppy or MinKNOW containing additional information
(can be bgzip, bzip2 or gzip compressed) - sorted bam files
- sequencing_summary.txt output table generated by albacore, guppy or MinKnow basecalling (can be gzip, bz2, zip and xz compressed)
- fasta files
(can be bgzip, bzip2 or gzip compressed)
Multiple files of the same type can be offered simultaneously
INSTALLATION
pip install NanoPlot
Upgrade to a newer version using:
pip install NanoPlot --upgrade
or
conda install -c bioconda nanoplot
The script is written for python3.
OUTPUT
NanoPlot creates:
- a statistical summary
- a number of plots
- a html summary file
USAGE
NanoPlot [-h] [-v] [-t THREADS] [--verbose] [--store] [--raw]
[-o OUTDIR] [-p PREFIX] [--maxlength N] [--minlength N]
[--drop_outliers] [--downsample N] [--loglength]
[--percentqual] [--alength] [--minqual N]
[--readtype {1D,2D,1D2}] [--barcoded] [--runtime_until N]
[-c COLOR]
[-f {eps,jpeg,jpg,pdf,pgf,png,ps,raw,rgba,svg,svgz,tif,tiff}]
[--plots [{kde,hex,dot,pauvre} [{kde,hex,dot,pauvre} ...]]]
[--listcolors] [--no-N50] [--N50] [--title TITLE]
(--fastq file [file ...] | --fasta file [file ...] | --fastq_rich file [file ...] | --fastq_minimal file [file ...] | --summary file [file ...] | --bam file [file ...] | --cram file [file ...] | --pickle pickle)
General options:
-h, --help show the help and exit
-v, --version Print version and exit.
-t, --threads THREADS Set the allowed number of threads to be used by the script
--verbose Write log messages also to terminal.
--store Store the extracted data in a pickle file for future plotting.
--raw Store the extracted data in tab separated file.
-o, --outdir OUTDIR Specify directory in which output has to be created.
-p, --prefix PREFIX Specify an optional prefix to be used for the output files.
Options for filtering or transforming input prior to plotting:
--maxlength N Hide reads longer than length specified.
--minlength N Hide reads shorter than length specified.
--drop_outliers Drop outlier reads with extreme long length.
--downsample N Reduce dataset to N reads by random sampling.
--loglength Logarithmic scaling of lengths in plots.
--percentqual Use qualities as theoretical percent identities.
--alength Use aligned read lengths rather than sequenced length (bam mode)
--minqual N Drop reads with an average quality lower than specified.
--runtime_until N Only take the N first hours of a run
--readtype Which read type to extract information about from a summary file.
One of 1D (default), 2D, 1D2
--barcoded Use if you want to split the summary file by barcode
Options for customizing the plots created:
-c, --color COLOR Specify a color for the plots, must be a valid matplotlib color
-f, --format Specify the output format of the plots.
One of png [default], eps,jpeg,jpg,pdf,pgf,ps,raw,rgba,svg,svgz,tif,tiff
--plots Specify which bivariate plots have to be made.
One or more of 'dot' (default), 'kde' (default), 'hex' and 'pauvre'
--listcolors List the colors which are available for plotting and exit.
--no-N50 Hide the N50 mark in the read length histogram
--N50 Show the N50 mark in the read length histogram
--title TITLE Add a title to all plots, requires quoting if using spaces
Input data sources, one of these is required.:
--fastq file [file ...]
Data is in one or more default fastq file(s).
--fasta file [file ...]
Data is in one or more default fasta file(s).
--fastq_rich file [file ...]
Data is in one or more fastq file(s) generated by albacore or MinKNOW with
additional information concerning channel and time.
--fastq_minimal file [file ...]
Data is in one or more fastq file(s) generated by albacore or MinKNOW with
additional information concerning channel and time. Minimal data is extracted
swiftly without elaborate checks.
--summary file [file ...]
Data is in one or more summary file(s) generated by albacore or guppy.
--bam file [file ...]
Data is in one or more sorted bam file(s).
--cram file [file ...]
Data is in one or more sorted cram file(s).
--pickle pickle Data is a pickle file stored earlier.
NOTES
--downsample
won't save you tons of time, as down sampling is only done after collecting all data and probably would only make a difference for a huge amount of data. If you want to save time you could down sample your data upfront. Note also that extracting information from a summary file is faster than other formats, and that you can extract from multiple files simultaneously (which will happen in parallel then). Some plot types (especially kde) are slower than others and you can take a look at the input for--plots
to speed things up (default is to make both kde and dot plot). If you are only interested in say the read length histogram it is possible to write a script to just get you that and avoid wasting time on the rest. Let me know if you need any help here.
EXAMPLE USAGE
Nanoplot --summary sequencing_summary.txt --loglength -o summary-plots-log-transformed
NanoPlot -t 2 --fastq reads1.fastq.gz reads2.fastq.gz --maxlength 40000 --plots hex dot
NanoPlot -t 12 --color yellow --bam alignment1.bam alignment2.bam alignment3.bam --downsample 10000 -o bamplots_downsampled
This script now also provides read length vs mean quality plots in the 'pauvre'-style from @conchoecia.
ACKNOWLEDGMENTS/CONTRIBUTORS
- Andreas Sjödin for building and maintaining conda recipes
- Darrin Schultz @conchoecia for Pauvre code
- @alexomics for fixing the indentation of the printed stats
- Botond Sipos @bsipos for speeding up the calculation of average quality scores
CONTRIBUTING
I welcome all suggestions, bug reports, feature requests and contributions. Please leave an issue or open a pull request. I will usually respond within a day, or rarely within a few days.
PLOTS GENERATED
Plot | Fastq | Fastq_rich | Fastq_minimal | Bam | Summary | Options | Style |
---|---|---|---|---|---|---|---|
Histogram of read length | x | x | x | x | x | N50 | |
Histogram of (log transformed) read length | x | x | x | x | x | N50 | |
Bivariate plot of length against base call quality | x | x | x | x | log transformation | dot, hex, kde, pauvre | |
Heatmap of reads per channel | x | x | |||||
Cumulative yield plot | x | x | x | ||||
Violin plot of read length over time | x | x | x | ||||
Violin plot of base call quality over time | x | x | |||||
Bivariate plot of aligned read length against sequenced read length | x | dot, hex, kde | |||||
Bivariate plot of percent reference identity against read length | x | log transformation | dot, hex, kde | ||||
Bivariate plot of percent reference identity against base call quality | x | dot, hex, kde | |||||
Bivariate plot of mapping quality against read length | x | log transformation | dot, hex, kde | ||||
Bivariate plot of mapping quality against basecall quality | x | dot, hex, kde |
COMPANION SCRIPTS
- NanoComp: comparing multiple runs
- NanoStat: statistic summary report of reads or alignments
- NanoFilt: filtering and trimming of reads
- NanoLyse: removing contaminant reads (e.g. lambda control DNA) from fastq
CITATION
If you use this tool, please consider citing our publication.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file NanoPlot-1.25.0.tar.gz
.
File metadata
- Download URL: NanoPlot-1.25.0.tar.gz
- Upload date:
- Size: 14.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f8e16822493bf3c2d27ad8067ce34feaefca4a68a72fb8af9554663153dd564d |
|
MD5 | d44be6ee23e5829fef3bc548ad817832 |
|
BLAKE2b-256 | 742b5a107ae1dffc04e18385b61afc8175861e028b9a1441ff890455bd80fc7f |