A Multilayered Perceptron Nueral Network Implemented In Python & Numpy
Project description
Multilayered Perceptron By Pranav Sai:
#Network 2=InputSize,3=HiddenSize, 1=OutputSize
net=Network(2,3,1)
#Traning Data : training_inputs= hours slept,hours studied ; training_outputs= Grade of Test training_inputs = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
training_outputs = np.array(([92], [86], [89]), dtype=float)
net.train(training_inputs,training_outputs,1000)
print(“Predicted Output: “ + str(net.run([2,3])))
CHANGELOG
0.0.1(2/27/2022)
-First Release: Multilayered Perception
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
NeuNetMlp-0.0.4.tar.gz
(3.0 kB
view details)
File details
Details for the file NeuNetMlp-0.0.4.tar.gz
.
File metadata
- Download URL: NeuNetMlp-0.0.4.tar.gz
- Upload date:
- Size: 3.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/30.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.2.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8aff90569a87fa7f94d3267e5cdf0706690394583e87e03df6dac65434c282b6 |
|
MD5 | c36a8fa7ceff830aae8b56f5243e47f1 |
|
BLAKE2b-256 | 5e3e80ad82487bc260bc065de2f151da3961e643b722b8c390b07f1d23952b63 |