Skip to main content

A BIDS toolbox for connectivity & gradient analyses.

Project description

NeuroConn

NeuroConn is a Python package that provides a user-friendly interface for fMRI preprocessing and computing connectivity matrices and gradients. It is designed as a BIDS application, allowing easy integration with BIDS-formatted datasets. Documentation: https://victoris93.github.io/NeuroConn/

Features

NB! If you wish to run fmriprep within this package, install Docker Desktop first. Keep it running when you start RawDataset.docker_fmriprep()

  • Preprocessing of fMRI data using the fmriprep pipeline
  • Computation of connectivity matrices and gradients
  • Direct output of gradients or connectivity matrices for any subject without specifying preprocessing parameters
  • Handling of BIDS-formatted datasets

Installation

You can install NeuroConn using pip: pip install NeuroConn

Usage

1. fMRIPrep. The class RawDataset features a method to run fmriprep within within your Python environment. Before running it:

  1. Register with freesurfer and download the license file freesurfer_license.txt)
  2. Install Docker Desktop.
  3. After having activated your environment, run pip install fmriprep-docker.
  4. Start Docker Desktop. Then, give this a try:
from NeuroConn.preprocessing.preprocessing import RawDataset, FmriPreppedDataSet
from NeuroConn.data.example_datasets import fetch_example_data
ex_data = fetch_example_data() # from https://openneuro.org/datasets/ds002748
data = RawDataset(ex_data)
subject = '52'
data.docker_fmriprep(subject, fs_reconall = False, fs_license = <path_to_freesurfer_license.txt>)

2. Post-fMRIPrep Here's an example of how to use the FmriPreppedDataSet class provided by NeuroConn:

from NeuroConn.preprocessing.preprocessing import RawDataset, FmriPreppedDataSet
from NeuroConn.data.example_datasets import fetch_example_data

# Download the dataset preprocessed with fMRIPrep
example_data = fetch_example_data('https://drive.google.com/file/d/1XjF5wDJXHzMyfoAjQE6NW2xcj9PulZzH/view?usp=share_link') 
# Initialize the dataset object 
dataset = FmriPreppedDataSet(example_data)

# Compute connectivity matrix
conn_matrix = data_prepped.get_conn_matrix(subject, parcellation='schaefer', task='rest', n_parcels=1000, save = True)

# Compute 10 gradients (Margulies et al., 2016)
gradients = get_gradients(data_prepped,subject, task='rest', n_components = 10, approach = "pca")

For more detailed information and examples, please refer to the notebook.

Contributing

Contributions are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request on this GitHub repository.

License

NeuroConn is released under the MIT License. See the LICENSE file for more details.

Example Data

Bezmaternykh D.D., Melnikov M.Y., Savelov A.A. et al. Brain Networks Connectivity in Mild to Moderate Depression: Resting State fMRI Study with Implications to Nonpharmacological Treatment. Neural Plasticity, 2021. V. 2021. № 8846097. PP. 1-15. DOI: 10.1155/2021/8846097

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NeuroConn-0.1.0a7.tar.gz (7.7 MB view details)

Uploaded Source

Built Distribution

NeuroConn-0.1.0a7-py3-none-any.whl (7.7 MB view details)

Uploaded Python 3

File details

Details for the file NeuroConn-0.1.0a7.tar.gz.

File metadata

  • Download URL: NeuroConn-0.1.0a7.tar.gz
  • Upload date:
  • Size: 7.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for NeuroConn-0.1.0a7.tar.gz
Algorithm Hash digest
SHA256 12f045bc9af75de87d5f9de0cffb18d29a74e61fe1d4edfca0d17f557caaf720
MD5 ab3c1fbe26e393c881321995048cf450
BLAKE2b-256 1aac5433ce6e655d495cced4fa6698f7bce2384d28e96ffca4a2e14f5621e157

See more details on using hashes here.

File details

Details for the file NeuroConn-0.1.0a7-py3-none-any.whl.

File metadata

  • Download URL: NeuroConn-0.1.0a7-py3-none-any.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for NeuroConn-0.1.0a7-py3-none-any.whl
Algorithm Hash digest
SHA256 adaad8f03f6ebd0fcc9fd09cfe32c8d854dd8ef3fe3000d8fd90731798cda69d
MD5 ea3c966a87052ed9e554e11175546dac
BLAKE2b-256 4959b89d334f6348705f571a479a1b360660ed920329942f177940fbfb55c935

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page