Run NiChart_DLMUSE on your data(currently only structural pipeline is supported).
Project description
NiChart_DLMUSE
Overview
NiChart_DLMUSE is a package that allows the users to process their brain imaging (sMRI) data easily and efficiently.
NiChart_DLMUSE offers easy ICV (Intra-Cranial Volume) mask extraction, and brain segmentation into ROIs. This is achieved through the DLICV and DLMUSE methods. Intermediate step results are saved for easy access to the user.
Given an input (sMRI) scan, NiChart_DLMUSE extracts the following:
- ICV mask
- Brain MUSE ROI segmentation
- ROI volumes in a .csv format
- Individual ROI mask (optionally).
This package uses nnUNet (version 1) as a basis model architecture for the deep learning parts, nipype for the workflow management and various other libraries.
It is available both as an installable package, as well as a docker container. Please see Installation and Usage for more information on how to use it.
Installation
-
Create a new conda env
conda create --name NCP python=3.8 conda activate NCP
-
Clone and install NiChart_DLMUSE
git clone https://github.com/CBICA/NiChart_DLMUSE.git cd NiChart_DLMUSE pip install .
-
Run NiChart_DLMUSE. Example usage below
NiChart_DLMUSE --indir /path/to/input \ --outdir /path/to/output \ --pipelinetype structural \ --derived_ROI_mappings_file /path/to/file.csv \ --MUSE_ROI_mappings_file /path/to/file.csv \ --nnUNet_raw_data_base /path/to/folder/ \ --nnUNet_preprocessed /path/to/folder/ \ --model_folder /path/to/folder/ \ --all_in_gpu True \ --mode fastest \ --disable_tta
Docker/Singularity/Apptainer-based build and installation
The package comes already pre-built as a docker container, for convenience. Please see Usage for more information on how to use it. Alternatively, you can build the docker image locally, like so:
docker -t NiChart_DLMUSE .
Singularity and Apptainer images can be built for NiChart_DLMUSE, allowing for frozen versions of the pipeline and easier installation for end-users. Note that the Singularity project recently underwent a rename to "Apptainer", with a commercial fork still existing under the name "Singularity" (confusing!). Please note that while for now these two versions are largely identical, future versions may diverge. It is recommended to use the AppTainer distribution. For now, these instructions apply to either.
First install the container engine. Then, from the cloned project repository, run:
singularity build nichart_dlmuse.sif singularity.def
This will take some time, but will build a containerized version of your current repo. Be aware that this includes any local changes! The nichart_dlmuse.sif file can be distributed via direct download, or pushed to a container registry that accepts SIF images.
Usage
Pre-trained nnUNet models for the skull-stripping and segmentation tasks can be found in the NiChart_DLMUSE - 0.1.7 release as an artifact. Feel free to use it under the package's license.
Due to the nnunetv1 dependency, the package follows nnUNet's requirements for folder structure and naming conventions. It is recommended that you follow this guide's structure and logic, so that the issues arising from the requirements of the nnUNet dependency are minimized.
The model provided as an artifact is already in the file structure that's needed for the package to work, so make sure to include it as downloaded.
The nnUNet_preprocessed
, nnUNet_raw_database
directories are needed for the nnUNet library to store (if needed) temporary files. It is highly suggested that you keep these in the same directory as the model and the data, as to avoid any confusion with using the library. This will be fixed in upcoming releases.
Therefore assuming the following folder structure:
temp
├── nnUNet_model // As provided from the release
│  └── nnUNet
├── nnUNet_out // Output destination
├── nnUNet_preprocessed // Empty
└── nnUNet_raw_database // Empty
└── nnUNet_raw_data // Input folder. Image names are irrelevant.
├── image1.nii.gz
├── image2.nii.gz
└── image3.nii.gz
As a locally installed package
A complete command would be (run from the directory of the package):
NiChart_DLMUSE --indir /path/to/temp/nnUNet_raw_database/nnUNet_raw_data \
--outdir /path/to/temp/nnUNet_out \
--pipelinetype structural \
--derived_ROI_mappings_file shared/dicts/MUSE_mapping_derived_rois.csv \
--MUSE_ROI_mappings_file shared/dicts/MUSE_mapping_consecutive_indices.csv \
--nnUNet_raw_data_base /path/to/temp/nnUNet_raw_database \
--nnUNet_preprocessed /path/to/temp/nnUNet_preprocessed \
--model_folder /path/to/temp/nnUNet_model \
--all_in_gpu True \
--mode fastest \
--disable_tta
For further explanation please refer to the complete documentation:
NiChart_DLMUSE -h
Using the docker container
Using the file structure explained above, an example command using the docker container is the following:
docker run -it --rm --gpus all -v ./:/workspace/ aidinisg/nichart_dlmuse:0.1.7 NiChart_DLMUSE -i temp/nnUNet_raw_database/nnUNet_raw_data/ -o temp/nnUNet_out/ -p structural --derived_ROI_mappings_file /NiChart_DLMUSE/shared/dicts/MUSE_mapping_derived_rois.csv --MUSE_ROI_mappings_file /NiChart_DLMUSE/shared/dicts/MUSE_mapping_consecutive_indices.csv --model_folder temp/nnUNet_model/ --nnUNet_raw_data_base temp/nnUNet_raw_database/ --nnUNet_preprocessed temp/nnUNet_preprocessed/ --all_in_gpu True --mode fastest --disable_tta
Using the singularity container
singularity run --nv --containall --bind /path/to/.\:/workspace/ nichart_dlmuse.simg NiChart_DLMUSE -i /workspace/temp/nnUNet_raw_data_base/nnUNet_raw_data/ -o /workspace/temp/nnUNet_out -p structural --derived_ROI_mappings_file /NiChart_DLMUSE/shared/dicts/MUSE_mapping_derived_rois.csv --MUSE_ROI_mappings_file /NiChart_DLMUSE/shared/dicts/MUSE_mapping_consecutive_indices.csv --nnUNet_raw_data_base /workspace/temp/nnUNet_raw_data_base/ --nnUNet_preprocessed /workspace/temp/nnUNet_preprocessed/ --model_folder /workspace/temp/nnUNet_model/ --all_in_gpu True --mode fastest --disable_tta
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nichart_dlmuse-0.1.7.tar.gz
.
File metadata
- Download URL: nichart_dlmuse-0.1.7.tar.gz
- Upload date:
- Size: 16.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a6b890fd1fa18aff4692954002ce437e56f0c500ddcfa3d01ff059c7488619b9 |
|
MD5 | 3b3df2c2f3af71ac763e736585989bc3 |
|
BLAKE2b-256 | d33e77428352a9e32a43054b6aae5ae1b2e2659d6b092f05b61e968efb4a2355 |
File details
Details for the file NiChart_DLMUSE-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: NiChart_DLMUSE-0.1.7-py3-none-any.whl
- Upload date:
- Size: 21.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a34e5bcbf58b63b4aec26ff7740e2bb834d40d28ba253120e45fa518176314ae |
|
MD5 | 1b1dba7dfb0c43383215dd5be71b9d76 |
|
BLAKE2b-256 | 7cccaaa585e007968d32a3a03f97c0926b339f2071685d6ec49dd2dbedf5b089 |