Skip to main content

An open-source convolutional neural networks platform for research in medical image analysis and image-guided therapy

Project description


NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNN) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can:

  • Get started with established pre-trained networks using built-in tools
  • Adapt existing networks to your imaging data
  • Quickly build new solutions to your own image analysis problems

NiftyNet is a consortium of research groups (WEISS – Wellcome EPSRC Centre for Interventional and Surgical Sciences, CMIC – Centre for Medical Image Computing, HIG – High-dimensional Imaging Group), where WEISS acts as the consortium lead.


NiftyNet currently supports medical image segmentation and generative adversarial networks. NiftyNet is not intended for clinical use. Other features of NiftyNet include:

  • Easy-to-customise interfaces of network components
  • Sharing networks and pretrained models
  • Support for 2-D, 2.5-D, 3-D, 4-D inputs [1]
  • Efficient discriminative training with multiple-GPU support
  • Implementation of recent networks (HighRes3DNet, 3D U-net, V-net, DeepMedic)
  • Comprehensive evaluation metrics for medical image segmentation
[1]2.5-D: volumetric images processed as a stack of 2D slices; 4-D: co-registered multi-modal 3D volumes

Getting started and contributing

Please follow the instructions on the NiftyNet source code repository.

Citing NiftyNet

If you use NiftyNet, please cite the following paper:

  author = {Li, Wenqi and Wang, Guotai and Fidon, Lucas and Ourselin, Sebastien and Cardoso, M. Jorge and Vercauteren, Tom},
  title = {On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task},
  booktitle = {International Conference on Information Processing in Medical Imaging (IPMI)},
  year = {2017}

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for NiftyNet, version 0.1.1rc58
Filename, size File type Python version Upload date Hashes
Filename, size NiftyNet-0.1.1rc58-py2.py3-none-any.whl (129.4 kB) File type Wheel Python version py2.py3 Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page