Skip to main content

An ensemble of Neural Nets for Nudity Detection and Censoring

Project description

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

DOI

Uncensored version of the following image can be found at https://i.imgur.com/rga6845.jpg (NSFW)

Classifier classes:

class name Description
safe Image/Video is not sexually explicit
unsafe Image/Video is sexually explicit

Default Detector classes:

class name Description
EXPOSED_ANUS Exposed Anus; Any gender
EXPOSED_ARMPITS Exposed Armpits; Any gender
COVERED_BELLY Provocative, but covered Belly; Any gender
EXPOSED_BELLY Exposed Belly; Any gender
COVERED_BUTTOCKS Provocative, but covered Buttocks; Any gender
EXPOSED_BUTTOCKS Exposed Buttocks; Any gender
FACE_F Female Face
FACE_M Male Face
COVERED_FEET Covered Feet; Any gender
EXPOSED_FEET Exposed Feet; Any gender
COVERED_BREAST_F Provocative, but covered Breast; Female
EXPOSED_BREAST_F Exposed Breast; Female
COVERED_GENITALIA_F Provocative, but covered Genitalia; Female
EXPOSED_GENITALIA_F Exposed Genitalia; Female
EXPOSED_BREAST_M Exposed Breast; Male
EXPOSED_GENITALIA_M Exposed Genitalia; Male

Base Detector classes:

class name Description
EXPOSED_BELLY Exposed Belly; Any gender
EXPOSED_BUTTOCKS Exposed Buttocks; Any gender
EXPOSED_BREAST_F Exposed Breast; Female
EXPOSED_GENITALIA_F Exposed Genitalia; Female
EXPOSED_GENITALIA_M Exposed Genitalia; Male
EXPOSED_BREAST_M Exposed Breast; Male

As self-hostable API service

# Classifier
docker run -it -p8080:8080 notaitech/nudenet:classifier

# Detector
docker run -it -p8080:8080 notaitech/nudenet:detector

# See fastDeploy-file_client.py for running predictions via fastDeploy's REST endpoints 
wget https://raw.githubusercontent.com/notAI-tech/fastDeploy/master/cli/fastDeploy-file_client.py
# Single input
python fastDeploy-file_client.py --file PATH_TO_YOUR_IMAGE

# Client side batching
python fastDeploy-file_client.py --dir PATH_TO_FOLDER --ext jpg

Note: golang example https://github.com/notAI-tech/NudeNet/issues/63#issuecomment-729555360, thanks to Preetham Kamidi

As Python module

Installation:

pip install --upgrade nudenet

Classifier Usage:

# Import module
from nudenet import NudeClassifier

# initialize classifier (downloads the checkpoint file automatically the first time)
classifier = NudeClassifier()

# Classify single image
classifier.classify('path_to_image_1')
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}
# Classify multiple images (batch prediction)
# batch_size is optional; defaults to 4
classifier.classify(['path_to_image_1', 'path_to_image_2'], batch_size=BATCH_SIZE)
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY},
#          'path_to_image_2': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}

# Classify video
# batch_size is optional; defaults to 4
classifier.classify_video('path_to_video', batch_size=BATCH_SIZE)
# Returns {"metadata": {"fps": FPS, "video_length": TOTAL_N_FRAMES, "video_path": 'path_to_video'},
#          "preds": {frame_i: {'safe': PROBABILITY, 'unsafe': PROBABILITY}, ....}}

Thanks to Johnny Urosevic, NudeClassifier is also available in tflite.

TFLite Classifier Usage:

# Import module
from nudenet import NudeClassifierLite

# initialize classifier (downloads the checkpoint file automatically the first time)
classifier_lite = NudeClassifierLite()

# Classify single image
classifier_lite.classify('path_to_image_1')
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}
# Classify multiple images (batch prediction)
# batch_size is optional; defaults to 4
classifier_lite.classify(['path_to_image_1', 'path_to_image_2'])
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY},
#          'path_to_image_2': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}

Using the tflite classifier from flutter: https://github.com/ndaysinaiK/nude-test

Detector Usage:

# Import module
from nudenet import NudeDetector

# initialize detector (downloads the checkpoint file automatically the first time)
detector = NudeDetector() # detector = NudeDetector('base') for the "base" version of detector.

# Detect single image
detector.detect('path_to_image')
# fast mode is ~3x faster compared to default mode with slightly lower accuracy.
detector.detect('path_to_image', mode='fast')
# Returns [{'box': LIST_OF_COORDINATES, 'score': PROBABILITY, 'label': LABEL}, ...]

# Detect video
# batch_size is optional; defaults to 2
# show_progress is optional; defaults to True
detector.detect_video('path_to_video', batch_size=BATCH_SIZE, show_progress=BOOLEAN)
# fast mode is ~3x faster compared to default mode with slightly lower accuracy.
detector.detect_video('path_to_video', batch_size=BATCH_SIZE, show_progress=BOOLEAN, mode='fast')
# Returns {"metadata": {"fps": FPS, "video_length": TOTAL_N_FRAMES, "video_path": 'path_to_video'},
#          "preds": {frame_i: {'box': LIST_OF_COORDINATES, 'score': PROBABILITY, 'label': LABEL}, ...], ....}}

Notes:

  • detect_video and classify_video first identify the "unique" frames in a video and run predictions on them for significant performance improvement.
  • V1 of NudeDetector (available in master branch of this repo) was trained on 12000 images labelled by the good folks at cti-community.
  • V2 (current version) of NudeDetector is trained on 160,000 entirely auto-labelled (using classification heat maps and various other hybrid techniques) images.
  • The entire data for the classifier is available at https://archive.org/details/NudeNet_classifier_dataset_v1
  • A part of the auto-labelled data (Images are from the classifier dataset above) used to train the base Detector is available at https://github.com/notAI-tech/NudeNet/releases/download/v0/DETECTOR_AUTO_GENERATED_DATA.zip

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NudeNet-2.0.9.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

NudeNet-2.0.9-py3-none-any.whl (24.1 kB view details)

Uploaded Python 3

File details

Details for the file NudeNet-2.0.9.tar.gz.

File metadata

  • Download URL: NudeNet-2.0.9.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.1

File hashes

Hashes for NudeNet-2.0.9.tar.gz
Algorithm Hash digest
SHA256 296883cc7b218b4a9181aca55257e44ac0de9aceafa91ce5f82197a053deeaf8
MD5 d0030939975000c6bbac5cb4c6788daf
BLAKE2b-256 d4dcefe7618feb71cc833ce3e208f0acde41c3b883815ebe382db5b9f0d7dee7

See more details on using hashes here.

File details

Details for the file NudeNet-2.0.9-py3-none-any.whl.

File metadata

  • Download URL: NudeNet-2.0.9-py3-none-any.whl
  • Upload date:
  • Size: 24.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.1

File hashes

Hashes for NudeNet-2.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 5755ddde400040ae341bce65defb8e6adf8e9424038b749bdac8c2d53bca479b
MD5 91ad8d76af27e9f025fb23e9358f9c7f
BLAKE2b-256 e969b989af279345fa5748bc54d1034be793b2c4ada3a4d01104baba0a6cc3f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page