Skip to main content

Solves automatic numerical differentiation problems in one or more variables.

Project description

https://badge.fury.io/py/numdifftools.png https://travis-ci.org/pbrod/numdifftools.svg?branch=master https://pypip.in/d/numdifftools/badge.png

Suite of tools written in _Python to solve automatic numerical differentiation problems in one or more variables. Finite differences are used in an adaptive manner, coupled with a Romberg extrapolation methodology to provide a maximally accurate result. The user can configure many options like; changing the order of the method or the extrapolation, even allowing the user to specify whether complex-step, central, forward or backward differences are used.

The methods provided are:

  • Derivative: Compute the derivatives of order 1 through 10 on any scalar function.

  • Gradient: Compute the gradient vector of a scalar function of one or more variables.

  • Jacobian: Compute the Jacobian matrix of a vector valued function of one or more variables.

  • Hessian: Compute the Hessian matrix of all 2nd partial derivatives of a scalar function of one or more variables.

  • Hessdiag: Compute only the diagonal elements of the Hessian matrix

All of these methods also produce error estimates on the result.

The documentation for numdifftools is available here http://numdifftools.readthedocs.org/

To test if the toolbox is working paste the following in an interactive python session:

import numdifftools as nd
nd.test(coverage=True, doctests=True)

Examples

Compute 1’st and 2’nd derivative of exp(x), at x == 1:

>>> import numpy as np
>>> import numdifftools as nd
>>> fd = nd.Derivative(np.exp)        # 1'st derivative
>>> fdd = nd.Derivative(np.exp, n=2)  # 2'nd derivative
>>> fd(1)
array([ 2.71828183])

Nonlinear least squares:

>>> xdata = np.reshape(np.arange(0,1,0.1),(-1,1))
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> Jfun = nd.Jacobian(fun)
>>> np.abs(Jfun([1,2,0.75])) < 1e-14 # should be numerically zero
array([[ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True]], dtype=bool)

Compute gradient of sum(x**2):

>>> fun = lambda x: np.sum(x**2)
>>> dfun = nd.Gradient(fun)
>>> dfun([1,2,3])
array([ 2.,  4.,  6.])

See also

scipy.misc.derivative

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numdifftools-0.9.2.zip (228.7 kB view hashes)

Uploaded Source

Built Distribution

numdifftools-0.9.2-py2-none-any.whl (58.1 kB view hashes)

Uploaded Python 2

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page