Optimized Hierarchical Fused Fuzzy Deep Reinforcement Learning
Project description
OHFFDRL
Optimized Hierarchical Fused Fuzzy Deep Reinforcement Learning.
Example
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import OHFFDRL as oh
# === Step 1: Load and preprocess data ===
df = pd.read_csv("MAINDiagnostics.csv")
df = df.drop(columns=["IDFILENAME", "FileName", "Beat"])
df["Gender"] = df["Gender"].map({"MALE": 1, "FEMALE": 0})
normal_group = ["SR", "SB", "ST", "SI", "SAAWR"]
arrhythmia_group = ["AFIB", "AF", "SVT", "AT", "AVNRT", "AVRT"]
df["Rhythm_Binary"] = df["Rhythm"].apply(lambda x: 0 if x in normal_group else (1 if x in arrhythmia_group else np.nan))
df = df.dropna(subset=["Rhythm_Binary"])
X = df.drop(columns=["Rhythm", "Rhythm_Binary"], errors='ignore').values
y = df["Rhythm_Binary"].astype(int).values
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# === SSO-inspired oversampling for class 1 ===
X_min = X_scaled[y == 1]
X_maj = X_scaled[y == 0]
n_to_generate = len(X_maj) - len(X_min)
def sso_augment(X, n_samples):
n_features = X.shape[1]
augmented = []
for _ in range(n_samples):
i, j = np.random.choice(len(X), 2, replace=False)
alpha = np.random.uniform(-1, 1, n_features)
sample = X[i] + alpha * (X[j] - X[i])
augmented.append(sample)
return np.array(augmented)
X_syn = sso_augment(X_min, n_to_generate)
y_syn = np.ones(n_to_generate, dtype=int)
X_bal = np.vstack([X_scaled, X_syn])
y_bal = np.concatenate([y, y_syn])
# === Train/test split ===
X_train, X_val, y_train, y_val = train_test_split(X_bal, y_bal, test_size=0.2, random_state=42, stratify=y_bal)
input_dim = X_train.shape[1]
ohf = oh.OHFFDRL(input_dim, X_train, X_val, y_train, y_val)
dim = 2 * 3 * input_dim
opt_vector = ohf.whho_optimize(dim)
mu_opt = opt_vector[:len(opt_vector)//2].reshape(3, input_dim)
sigma_opt = np.abs(opt_vector[len(opt_vector)//2:].reshape(3, input_dim)) + 1e-2
# === Step 5: Train final model ===
final_model = ohf.build_model(mu_opt, sigma_opt)
final_model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=30, batch_size=32, verbose=1)
# === Step 6: Evaluate ===
y_pred_final = np.argmax(final_model.predict(X_val), axis=1)
print(classification_report(y_val, y_pred_final, target_names=["Normal", "Arrhythmia"]))
You can find the "MAINDiagnostics.csv" here.
Authors
- Arman Daliri
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file ohffdrl-0.0.2-py3-none-any.whl.
File metadata
- Download URL: ohffdrl-0.0.2-py3-none-any.whl
- Upload date:
- Size: 4.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.13.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0f09ab9a10421c1d6f6d6fd267cd457d6bffa9bb0a72472254ef1abb35a4a25c
|
|
| MD5 |
371eb636903766dcd7a7f95d81a03e75
|
|
| BLAKE2b-256 |
b325a1576bb9e3dbe886c452368ad833660e5d7bc209122bd7595a4e0eee37f6
|