Description
Project description
Simply start oar job array on nef cluster
NB: To simply start a stand-alone job, use treefiles.start_oar
.
Install
pip install --upgrade OarLauncher
Usage
from collections import defaultdict
import treefiles as tf
from OarLauncher import ArrayJob
# Choose a directory where script and logs are dumped
out_dir = tf.Tree.new(__file__, "generated").dump(clean=True)
# Create the parameters array
nb_jobs, data = 10, defaultdict(list)
for i in range(nb_jobs):
data["simu_dir"].append(f"d_{i}")
data["infos"].append(f"this is job {i}")
# Path of the script that will be called by each job of the array
# Each line of data will be sent to this script as json command line argument
job_script = tf.curDirs(__file__, "job.py")
# Create the job array
jobs = ArrayJob(out_dir, data, job_script)
# Setup jobs conf
jobs.build_oar_command(
queue=tf.Queue.BESTEFFORT,
to_file=True, # whereas `shell_out` is dumped to file or returned via command line
wall_time=tf.walltime(minutes=2),
prgm=tf.Program.OARCTL, # `OARCTL` is blocking (main process is running until all jobs end), `OARSUB` is not
)
# Write scripts
jobs.dump(
# python_path=[...], # you can give a list of python paths that will be added to PYTHONPATH
# MY_ENV=..., # you can also specify PATH envs by passing them as kwargs
)
# Start the job array
shell_out = jobs.run() # blocking operation if prgm=tf.Program.OARCTL
print(shell_out)
tf.start_oar
def start_oar(
runme_str,
logs_dir: Union[tf.Tree, str] = None,
array_fname: str = None,
wall_time: str = walltime(minutes=1),
host: int = 1,
core: int = 1,
job_name: str = None,
queue: str = Queue.DEFAULT,
cmd_fname: str = None,
runme_args: List[str] = None,
do_run: bool = True,
with_json: bool = False,
notify: List = None,
prgm: str = Program.OARSUB,
stdout: str = None,
stderr: str = None,
) -> Union[str, List[str]]:
"""
Builds an oar command.
Usage example:
.. code::
cdir = tf.Tree.new(__file__)
sdir = cdir.dir("OarOut").dump(clean=True)
res = start_oar(
runme_str=cdir.path("runme.sh"),
logs_dir=sdir,
walltime=time(minute=10),
queue="besteffort",
core=2,
cmd_fname=sdir.path("cmd.sh"),
do_run=True,
)
:param runme_str: path to the runme script or command line
:param logs_dir: directory for std out/err
:param array_fname: path to the arguments file (array file)
:param wall_time: wall time of the job
:param host: numbre of nodes
:param core: number of cores
:param job_name: job name
:param queue: job queue ['default', 'besteffort']
:param cmd_fname: path to a file to save the oar command
:param runme_args: list of command line arguments given to the runme script
:param do_run: whether to execute the command or not
:param with_json: add the -J option in oarsub command
:param notify: notify options [List], you may use the class NotifyOar to build this option
:param prgm: `oarsub` or `oarctl sub`
:param stdout: path for stdout
:param stderr: path for stderr, defaults to stdout if None
:return: The output of the oar command if `do_run` is True else the oar command
"""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
OarLauncher-0.2.24.tar.gz
(5.2 kB
view details)
Built Distribution
File details
Details for the file OarLauncher-0.2.24.tar.gz
.
File metadata
- Download URL: OarLauncher-0.2.24.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8b4e269cc6a4b5b73e8cd83ae0174132779fe3620efe37c2416442acc3775d5 |
|
MD5 | 6d765c539d23536563d876d9837591dd |
|
BLAKE2b-256 | bee968e052ddc5e4af686d7bfe4055e5e5592118c7d95f51914224759f21c52a |
File details
Details for the file OarLauncher-0.2.24-py3-none-any.whl
.
File metadata
- Download URL: OarLauncher-0.2.24-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0477a504ad3adb4951aa40b233ec7bd5e7cb0617637a09802984c7fbc7c544f |
|
MD5 | 3514ffa4444e2c9b469fe55c0649d938 |
|
BLAKE2b-256 | 1f0c0c7a354794dcc9aafe2aa365198b48f1215b8d29a1e61d3dcb9c2b3faef0 |