Database of Processor Instructions/Opcodes
Project description
Opcodes Project
The goal of this project is to document instruction sets in a format convenient for tools development. An instruction set is represented by three files:
An XML file that describes instructions
An XSD file that describes the structure of the XML file
A Python module that reads the XML file and represents it as a set of Python objects
This project is a spin-off from PeachPy assembler.
Current status
The project provides descriptions for most user-mode x86, x86-64, and k1om instructions up to AVX-512 and SHA (including 3dnow!+, XOP, FMA3, FMA4, TBM and BMI2). The following instructions are currently NOT supported:
All priveledged instructions and user-mode system instructions (e.g. XSAVE, SLDT)
Legacy string/streaming instructions (MOVS/SCAS/CMPS/STOS/LODS)
LOCK and REP/REPZ/REPNZ prefixes
x87 FPU instructions
VIA Padlock instructions
Intel HTM instructions
For each instruction the following information is provided:
Summary description
Instruction names in Intel assembly (PeachPy, NASM, YASM and MASM assemblers), AT&T assembly (GNU assembler) and Plan 9 assembly (Go assembler)
Operand types and characteristics (whether the operand is input or output)
Implicit input and output registers
ISA where this instruction was introduced
Whether the instruction operates on FPU or MMX state
Whether the instruction operates on AVX or legacy SSE state
Whether the instruction has no dependency on input values when input operands refer to the same register (e.g. XOR eax, eax has no dependency on eax)
Whether the instruction is supported by Native Client validator and when the support was introduced
Whether the instruction that writes to a 32-bit register is recognized by x86-64 Native Client validator as zero-extending
Installation
pip install --upgrade Opcodes
Users
PeachPy – x86-64 assembler embedded in Python that targets High-Performance Computing use-cases.
Template-Assembly – Embedding x86 assembly code in C++ with metaprogramming using a domain specific language.
Peer-Reviewed Publications
Marat Dukhan “PeachPy meets Opcodes: Direct Machine Code Generation from Python”, Python for High-Performance Computing (PyHPC) 2015 (slides, paper on ACM Digital Library).
Acknowledgements
This work is a research project at the HPC Garage lab in the Georgia Institute of Technology, College of Computing, School of Computational Science and Engineering.
The work was supported in part by grants to Prof. Richard Vuduc’s research lab, The HPC Garage, from the National Science Foundation (NSF) under NSF CAREER award number 0953100; and a grant from the Defense Advanced Research Projects Agency (DARPA) Computer Science Study Group program
Any opinions, conclusions or recommendations expressed in this software and documentation are those of the authors and not necessarily reflect those of NSF or DARPA.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.