Skip to main content

Python package for soft sensing applications

Project description

OpenMEASURE

OpenMEASURE is an open source software for soft sensing applications.

Installation

Run the following command to install:

pip install openmeasure

The following packages will be installed:

  • Numpy >= 1.19
  • Scipy >= 1.5
  • Gpytorch >= 1.5.1
  • Cvxpy >= 1.1.3

Techniques

  • Dimensionality reduction (POD and constrained POD)

  • Reduced Order Model via GPR

  • Sparse sensing:

    • Optimal sensor placement (QR decomposition and Greedy Entropy Maximization)
    • Sparse placement for reconstruction (OLS and COLS methods)

Usage

import numpy as np
from gpr import GPR
from sparse_sensing import SPR
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.tri as tri

# Replace this with the path where you saved the data directory
path = './data/ROM/'

# This is a n x m matrix where n = 165258 is the number of cells times the number of features
# and m = 41 is the number of simulations.
X_train = np.load(path + 'X_2D_train.npy')

# This is a n x 4 matrix containing the 4 testing simulations
X_test = np.load(path + 'X_2D_test.npy')

features = ['T', 'CH4', 'O2', 'CO2', 'H2O', 'H2', 'OH', 'CO', 'NOx']
n_features = len(features)

# This is the file containing the x,z positions of the cells
xz = np.load(path + 'xz.npy')
n_cells = xz.shape[0]

# Create the x,y,z array
xyz = np.zeros((n_cells, 3))
xyz[:,0] = xz[:,0]
xyz[:,2] = xz[:,1]

# This reads the files containing the parameters (D, H2, phi) with which 
# the simulation were computed
P_train = np.genfromtxt(path + 'parameters_train.csv', delimiter=',', skip_header=1)
P_test = np.genfromtxt(path + 'parameters_test.csv', delimiter=',', skip_header=1)

# Load the outline the mesh (for plotting)
mesh_outline = np.genfromtxt(path + 'mesh_outline.csv', delimiter=',', skip_header=1)

#---------------------------------Plotting utilities--------------------------------------------------
def sample_cmap(x):
    return plt.cm.jet((np.clip(x,0,1)))

def plot_sensors(xz_sensors, features, mesh_outline):
    fig, ax = plt.subplots(figsize=(4, 4))
    ax.plot(mesh_outline[:,0], mesh_outline[:,1], c='k', lw=0.5, zorder=1)
    
    features_unique = np.unique(xz_sensors[:,2])
    colors = np.zeros((features_unique.size,4))
    for i in range(colors.shape[0]):
        colors[i,:] = sample_cmap(features_unique[i]/len(features))
        
    for i, f in enumerate(features_unique):
        mask = xz_sensors[:,2] == f
        ax.scatter(xz_sensors[:,0][mask], xz_sensors[:,1][mask], color=colors[i,:], 
                   marker='x', s=15, lw=0.5, label=features[int(f)], zorder=2)

    
    ax.set_xlabel('$x (\mathrm{m})$', fontsize=8)
    ax.set_ylabel('$z (\mathrm{m})$', fontsize=8)
    eps = 1e-2
    ax.set_xlim(-eps, 0.35)
    ax.set_ylim(-0.15,0.7+eps)
    ax.set_aspect('equal')
    ax.legend(fontsize=8, frameon=False, loc='center right')
    ax.xaxis.tick_top()
    ax.xaxis.set_label_position('top')
    wid = 0.3
    ax.xaxis.set_tick_params(width=wid)
    ax.yaxis.set_tick_params(width=wid)
    ax.set_xticks([0., 0.18, 0.35])
    ax.tick_params(axis='both', which='major', labelsize=8)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    
    plt.show()

def plot_contours_tri(x, y, zs, cbar_label=''):
    triang = tri.Triangulation(x, y)
    triang_mirror = tri.Triangulation(-x, y)

    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(6,6))
    
    z_min = np.min(zs)
    z_max = np.max(zs)
   
    n_levels = 12
    levels = np.linspace(z_min, z_max, n_levels)
    cmap_name= 'inferno'
    titles=['Original CFD','Predicted']
    
    for i, ax in enumerate(axs):
        if i == 0:
            ax.tricontourf(triang_mirror, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
        else:
            ax.tricontourf(triang, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
            ax.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) 
        
        ax.set_aspect('equal')
        ax.set_title(titles[i])
        ax.set_xlabel('$x (\mathrm{m})$')
        if i == 0:
            ax.set_ylabel('$z (\mathrm{m})$')
    
    fig.subplots_adjust(bottom=0., top=1., left=0., right=0.85, wspace=0.02, hspace=0.02)
    start = axs[1].get_position().bounds[1]
    height = axs[1].get_position().bounds[3]
    
    cb_ax = fig.add_axes([0.9, start, 0.05, height])
    cmap = mpl.cm.get_cmap(cmap_name, n_levels)
    norm = mpl.colors.Normalize(vmin=z_min, vmax=z_max)
    
    fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cb_ax, 
                orientation='vertical', label=cbar_label)
    
    plt.show()

#---------------------------------Sparse sensing--------------------------------------------------

spr = SPR(X_train, n_features, xyz) # Create the spr object

# Compute the optimal measurement matrix using qr decomposition
n_sensors = 14
C_qr = spr.optimal_placement(select_modes='number', n_modes=n_sensors)

# Get the sensors positions and features
xz_sensors = np.zeros((n_sensors, 4))
for i in range(n_sensors):
    index = np.argmax(C_qr[i,:])
    xz_sensors[i,:2] = xz[index % n_cells, :]
    xz_sensors[i,2] = index // n_cells

plot_sensors(xz_sensors, features, mesh_outline)

# Sample a test simulation using the optimal qr matrix
y_qr = np.ones((n_sensors,3))
y_qr[:,0] = C_qr @ X_test[:,3]

for i in range(n_sensors):
    y_qr[i,2] = np.argmax(C_qr[i,:]) // n_cells

# Fit the model and predict the low-dim vector (ap) and the high-dim solution (xp)
ap, xp = spr.fit_predict(C_qr, y_qr)

# Select the feature to plot
str_ind = 'T'
ind = features.index(str_ind)

plot_contours_tri(xz[:,0], xz[:,1], [X_test[ind*n_cells:(ind+1)*n_cells, 3], 
                xp[ind*n_cells:(ind+1)*n_cells]], cbar_label=str_ind)

#------------------------------------GPR ROM--------------------------------------------------
# Create the gpr object
gpr = GPR(X_train, n_features, xyz, P_train)

# Calculates the POD coefficients ap and the uncertainty for the test simulations
Ap, Sigmap = gpr.fit_predict(P_test, verbose=True)

# Reconstruct the high-dimensional state from the POD coefficients
Xp = gpr.reconstruct(Ap)

# Select the feature to plot
str_ind = 'OH'
ind = features.index(str_ind)

x_test = X_test[ind*n_cells:(ind+1)*n_cells,3]
xp_test = Xp[ind*n_cells:(ind+1)*n_cells, 3]

plot_contours_tri(xz[:,0], xz[:,1], [x_test, xp_test], cbar_label=str_ind)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

OpenMEASURE-0.1.10.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

OpenMEASURE-0.1.10-py3-none-any.whl (18.2 kB view details)

Uploaded Python 3

File details

Details for the file OpenMEASURE-0.1.10.tar.gz.

File metadata

  • Download URL: OpenMEASURE-0.1.10.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for OpenMEASURE-0.1.10.tar.gz
Algorithm Hash digest
SHA256 013974181077f2d03370e55d6b7c676c427710e680f7a3054c0a7aa29d293cd1
MD5 e4bd8c862df373cc0734593f41a43e9d
BLAKE2b-256 b6cd84729af5ae676854bebf315dfc9216f236c2709d6d293c8a49c58c34ab6f

See more details on using hashes here.

File details

Details for the file OpenMEASURE-0.1.10-py3-none-any.whl.

File metadata

  • Download URL: OpenMEASURE-0.1.10-py3-none-any.whl
  • Upload date:
  • Size: 18.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for OpenMEASURE-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 bbcbe8fa0a162c5e25a3a412d9b2dc205d90d4e6735ef85a22637a255c57ee9b
MD5 1d80e6f2535f97f90fe554df30380f1c
BLAKE2b-256 44a509536d795df28573df581351f8505103cd24404a47243cb6634a0a99fba4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page