Skip to main content

Python package for soft sensing applications

Project description

OpenMEASURE

OpenMEASURE is an open source software for soft sensing applications.

Installation

Run the following command to install:

pip install openmeasure

The following packages will be installed:

  • Numpy >= 1.19
  • Scipy >= 1.5
  • Gpytorch >= 1.5.1
  • Cvxpy >= 1.1.3

Techniques

  • Dimensionality reduction (POD and constrained POD)

  • Reduced Order Model via GPR

  • Sparse sensing:

    • Optimal sensor placement (QR decomposition and Greedy Entropy Maximization)
    • Sparse placement for reconstruction

Usage

import numpy as np
from gpr import GPR
from sparse_sensing import SPR
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.tri as tri

# Replace this with the path where you saved the data directory
path = './data/ROM/'

# This is a n x m matrix where n = 165258 is the number of cells times the number of features
# and m = 41 is the number of simulations.
X_train = np.load(path + 'X_2D_train.npy')

# This is a n x 4 matrix containing the 4 testing simulations
X_test = np.load(path + 'X_2D_test.npy')

features = ['T', 'CH4', 'O2', 'CO2', 'H2O', 'H2', 'OH', 'CO', 'NOx']
n_features = len(features)

# This is the file containing the x,z positions of the cells
xz = np.load(path + 'xz.npy')
n_cells = xz.shape[0]

# This reads the files containing the parameters (D, H2, phi) with which 
# the simulation were computed
P_train = np.genfromtxt(path + 'parameters_train.csv', delimiter=',', skip_header=1)
P_test = np.genfromtxt(path + 'parameters_test.csv', delimiter=',', skip_header=1)

# Load the outline the mesh (for plotting)
mesh_outline = np.genfromtxt(path + 'mesh_outline.csv', delimiter=',', skip_header=1)

#---------------------------------Plotting utilities--------------------------------------------------
def sample_cmap(x):
    return plt.cm.jet((np.clip(x,0,1)))

def plot_sensors(xz_sensors, features, mesh_outline):
    fig, ax = plt.subplots(figsize=(4, 4))
    ax.plot(mesh_outline[:,0], mesh_outline[:,1], c='k', lw=0.5, zorder=1)
    
    features_unique = np.unique(xz_sensors[:,2])
    colors = np.zeros((features_unique.size,4))
    for i in range(colors.shape[0]):
        colors[i,:] = sample_cmap(features_unique[i]/len(features))
        
    for i, f in enumerate(features_unique):
        mask = xz_sensors[:,2] == f
        ax.scatter(xz_sensors[:,0][mask], xz_sensors[:,1][mask], color=colors[i,:], 
                   marker='x', s=15, lw=0.5, label=features[int(f)], zorder=2)

    
    ax.set_xlabel('$x (\mathrm{m})$', fontsize=8)
    ax.set_ylabel('$z (\mathrm{m})$', fontsize=8)
    eps = 1e-2
    ax.set_xlim(-eps, 0.35)
    ax.set_ylim(-0.15,0.7+eps)
    ax.set_aspect('equal')
    ax.legend(fontsize=8, frameon=False, loc='center right')
    ax.xaxis.tick_top()
    ax.xaxis.set_label_position('top')
    wid = 0.3
    ax.xaxis.set_tick_params(width=wid)
    ax.yaxis.set_tick_params(width=wid)
    ax.set_xticks([0., 0.18, 0.35])
    ax.tick_params(axis='both', which='major', labelsize=8)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    
    plt.show()

def plot_contours_tri(x, y, zs, cbar_label=''):
    triang = tri.Triangulation(x, y)
    triang_mirror = tri.Triangulation(-x, y)

    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(6,6))
    
    z_min = np.min(zs)
    z_max = np.max(zs)
   
    n_levels = 12
    levels = np.linspace(z_min, z_max, n_levels)
    cmap_name= 'inferno'
    titles=['Original CFD','Predicted']
    
    for i, ax in enumerate(axs):
        if i == 0:
            ax.tricontourf(triang_mirror, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
        else:
            ax.tricontourf(triang, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
            ax.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) 
        
        ax.set_aspect('equal')
        ax.set_title(titles[i])
        ax.set_xlabel('$x (\mathrm{m})$')
        if i == 0:
            ax.set_ylabel('$z (\mathrm{m})$')
    
    fig.subplots_adjust(bottom=0., top=1., left=0., right=0.85, wspace=0.02, hspace=0.02)
    start = axs[1].get_position().bounds[1]
    height = axs[1].get_position().bounds[3]
    
    cb_ax = fig.add_axes([0.9, start, 0.05, height])
    cmap = mpl.cm.get_cmap(cmap_name, n_levels)
    norm = mpl.colors.Normalize(vmin=z_min, vmax=z_max)
    
    fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cb_ax, 
                orientation='vertical', label=cbar_label)
    
    plt.show()

#---------------------------------Sparse sensing--------------------------------------------------

spr = SPR(X_train, n_features) # Create the spr object

# Compute the optimal measurement matrix using qr decomposition
n_sensors = 14
C_qr = spr.optimal_placement(select_modes='number', n_modes=n_sensors)

# Get the sensors positions and features
xz_sensors = np.zeros((n_sensors, 4))
for i in range(n_sensors):
    index = np.argmax(C_qr[i,:])
    xz_sensors[i,:2] = xz[index % n_cells, :]
    xz_sensors[i,2] = index // n_cells

plot_sensors(xz_sensors, features, mesh_outline)

# Sample a test simulation using the optimal qr matrix
y_qr = np.zeros((n_sensors,2))
y_qr[:,0] = C_qr @ X_test[:,3]

for i in range(n_sensors):
    y_qr[i,1] = np.argmax(C_qr[i,:]) // n_cells

# Fit the model and predict the low-dim vector (ap) and the high-dim solution (xp)
ap, xp = spr.fit_predict(C_qr, y_qr)

# Select the feature to plot
str_ind = 'T'
ind = features.index(str_ind)

plot_contours_tri(xz[:,0], xz[:,1], [X_test[ind*n_cells:(ind+1)*n_cells, 3], 
                xp[ind*n_cells:(ind+1)*n_cells]], cbar_label=str_ind)

#------------------------------------GPR ROM--------------------------------------------------
# Create the gpr object
gpr = GPR(X_train, P_train, n_features)

# Calculates the POD coefficients ap and the uncertainty for the test simulations
Ap, Sigmap = gpr.fit_predict(P_test, verbose=True)

# Reconstruct the high-dimensional state from the POD coefficients
Xp = gpr.reconstruct(Ap)

# Select the feature to plot
str_ind = 'OH'
ind = features.index(str_ind)

x_test = X_test[ind*n_cells:(ind+1)*n_cells,3]
xp_test = Xp[ind*n_cells:(ind+1)*n_cells, 3]

plot_contours_tri(xz[:,0], xz[:,1], [x_test, xp_test], cbar_label='str_ind')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

OpenMEASURE-0.1.3.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

OpenMEASURE-0.1.3-py3-none-any.whl (13.9 kB view details)

Uploaded Python 3

File details

Details for the file OpenMEASURE-0.1.3.tar.gz.

File metadata

  • Download URL: OpenMEASURE-0.1.3.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for OpenMEASURE-0.1.3.tar.gz
Algorithm Hash digest
SHA256 88c62808f3b059c6dc7924307a9f03923eeb6f48e36769ee30d0590e82fc0842
MD5 15f0d29d6f76c5d3ba396fd03700fccd
BLAKE2b-256 da2e666f622b7b88b9a4b6741ddcd88f68f400170c84381ae5f036810eb46a89

See more details on using hashes here.

File details

Details for the file OpenMEASURE-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: OpenMEASURE-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 13.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for OpenMEASURE-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ec6c7b214b977761cdd3d93dd721780429dcbb4a8f13f6b444b73e4da8f0120e
MD5 ad9c19fff0331f0ffd81835f43ac7257
BLAKE2b-256 67156fbba5fe7f2c9e830e6e122f6c8a87763ff08316beee03cb75240a168e09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page