Skip to main content

Python package for soft sensing applications

Project description

OpenMEASURE

OpenMEASURE is an open source software for soft sensing applications.

Installation

Run the following command to install:

pip install openmeasure

The following packages will be installed:

  • Numpy >= 1.19
  • Scipy >= 1.5
  • Gpytorch >= 1.5.1
  • Cvxpy >= 1.1.3

Techniques

  • Dimensionality reduction (POD and constrained POD)

  • Reduced Order Model via GPR

  • Sparse sensing:

    • Optimal sensor placement (QR decomposition and Greedy Entropy Maximization)
    • Sparse placement for reconstruction (OLS and COLS methods)

Usage

import numpy as np
from gpr import GPR
from sparse_sensing import SPR
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.tri as tri

# Replace this with the path where you saved the data directory
path = './data/ROM/'

# This is a n x m matrix where n = 165258 is the number of cells times the number of features
# and m = 41 is the number of simulations.
X_train = np.load(path + 'X_2D_train.npy')

# This is a n x 4 matrix containing the 4 testing simulations
X_test = np.load(path + 'X_2D_test.npy')

features = ['T', 'CH4', 'O2', 'CO2', 'H2O', 'H2', 'OH', 'CO', 'NOx']
n_features = len(features)

# This is the file containing the x,z positions of the cells
xz = np.load(path + 'xz.npy')
n_cells = xz.shape[0]

# This reads the files containing the parameters (D, H2, phi) with which 
# the simulation were computed
P_train = np.genfromtxt(path + 'parameters_train.csv', delimiter=',', skip_header=1)
P_test = np.genfromtxt(path + 'parameters_test.csv', delimiter=',', skip_header=1)

# Load the outline the mesh (for plotting)
mesh_outline = np.genfromtxt(path + 'mesh_outline.csv', delimiter=',', skip_header=1)

#---------------------------------Plotting utilities--------------------------------------------------
def sample_cmap(x):
    return plt.cm.jet((np.clip(x,0,1)))

def plot_sensors(xz_sensors, features, mesh_outline):
    fig, ax = plt.subplots(figsize=(4, 4))
    ax.plot(mesh_outline[:,0], mesh_outline[:,1], c='k', lw=0.5, zorder=1)
    
    features_unique = np.unique(xz_sensors[:,2])
    colors = np.zeros((features_unique.size,4))
    for i in range(colors.shape[0]):
        colors[i,:] = sample_cmap(features_unique[i]/len(features))
        
    for i, f in enumerate(features_unique):
        mask = xz_sensors[:,2] == f
        ax.scatter(xz_sensors[:,0][mask], xz_sensors[:,1][mask], color=colors[i,:], 
                   marker='x', s=15, lw=0.5, label=features[int(f)], zorder=2)

    
    ax.set_xlabel('$x (\mathrm{m})$', fontsize=8)
    ax.set_ylabel('$z (\mathrm{m})$', fontsize=8)
    eps = 1e-2
    ax.set_xlim(-eps, 0.35)
    ax.set_ylim(-0.15,0.7+eps)
    ax.set_aspect('equal')
    ax.legend(fontsize=8, frameon=False, loc='center right')
    ax.xaxis.tick_top()
    ax.xaxis.set_label_position('top')
    wid = 0.3
    ax.xaxis.set_tick_params(width=wid)
    ax.yaxis.set_tick_params(width=wid)
    ax.set_xticks([0., 0.18, 0.35])
    ax.tick_params(axis='both', which='major', labelsize=8)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    
    plt.show()

def plot_contours_tri(x, y, zs, cbar_label=''):
    triang = tri.Triangulation(x, y)
    triang_mirror = tri.Triangulation(-x, y)

    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(6,6))
    
    z_min = np.min(zs)
    z_max = np.max(zs)
   
    n_levels = 12
    levels = np.linspace(z_min, z_max, n_levels)
    cmap_name= 'inferno'
    titles=['Original CFD','Predicted']
    
    for i, ax in enumerate(axs):
        if i == 0:
            ax.tricontourf(triang_mirror, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
        else:
            ax.tricontourf(triang, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
            ax.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) 
        
        ax.set_aspect('equal')
        ax.set_title(titles[i])
        ax.set_xlabel('$x (\mathrm{m})$')
        if i == 0:
            ax.set_ylabel('$z (\mathrm{m})$')
    
    fig.subplots_adjust(bottom=0., top=1., left=0., right=0.85, wspace=0.02, hspace=0.02)
    start = axs[1].get_position().bounds[1]
    height = axs[1].get_position().bounds[3]
    
    cb_ax = fig.add_axes([0.9, start, 0.05, height])
    cmap = mpl.cm.get_cmap(cmap_name, n_levels)
    norm = mpl.colors.Normalize(vmin=z_min, vmax=z_max)
    
    fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cb_ax, 
                orientation='vertical', label=cbar_label)
    
    plt.show()

#---------------------------------Sparse sensing--------------------------------------------------

spr = SPR(X_train, n_features) # Create the spr object

# Compute the optimal measurement matrix using qr decomposition
n_sensors = 14
C_qr = spr.optimal_placement(select_modes='number', n_modes=n_sensors)

# Get the sensors positions and features
xz_sensors = np.zeros((n_sensors, 4))
for i in range(n_sensors):
    index = np.argmax(C_qr[i,:])
    xz_sensors[i,:2] = xz[index % n_cells, :]
    xz_sensors[i,2] = index // n_cells

plot_sensors(xz_sensors, features, mesh_outline)

# Sample a test simulation using the optimal qr matrix
y_qr = np.zeros((n_sensors,2))
y_qr[:,0] = C_qr @ X_test[:,3]

for i in range(n_sensors):
    y_qr[i,1] = np.argmax(C_qr[i,:]) // n_cells

# Fit the model and predict the low-dim vector (ap) and the high-dim solution (xp)
ap, xp = spr.fit_predict(C_qr, y_qr)

# Select the feature to plot
str_ind = 'T'
ind = features.index(str_ind)

plot_contours_tri(xz[:,0], xz[:,1], [X_test[ind*n_cells:(ind+1)*n_cells, 3], 
                xp[ind*n_cells:(ind+1)*n_cells]], cbar_label=str_ind)

#------------------------------------GPR ROM--------------------------------------------------
# Create the gpr object
gpr = GPR(X_train, P_train, n_features)

# Calculates the POD coefficients ap and the uncertainty for the test simulations
Ap, Sigmap = gpr.fit_predict(P_test, verbose=True)

# Reconstruct the high-dimensional state from the POD coefficients
Xp = gpr.reconstruct(Ap)

# Select the feature to plot
str_ind = 'OH'
ind = features.index(str_ind)

x_test = X_test[ind*n_cells:(ind+1)*n_cells,3]
xp_test = Xp[ind*n_cells:(ind+1)*n_cells, 3]

plot_contours_tri(xz[:,0], xz[:,1], [x_test, xp_test], cbar_label='str_ind')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

OpenMEASURE-0.1.6.tar.gz (14.5 kB view details)

Uploaded Source

Built Distribution

OpenMEASURE-0.1.6-py3-none-any.whl (16.2 kB view details)

Uploaded Python 3

File details

Details for the file OpenMEASURE-0.1.6.tar.gz.

File metadata

  • Download URL: OpenMEASURE-0.1.6.tar.gz
  • Upload date:
  • Size: 14.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for OpenMEASURE-0.1.6.tar.gz
Algorithm Hash digest
SHA256 de6fa7c95216f395fc9257dd71c491e587bfd723eb82a20a338997f188a3f148
MD5 5d82f06e1753d64a4408ab5eee2109f9
BLAKE2b-256 39d55c7500b22ecc971bd92a2e5cab3b8eac332a1af1d03a55286a651e436344

See more details on using hashes here.

File details

Details for the file OpenMEASURE-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: OpenMEASURE-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 16.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for OpenMEASURE-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 a68e343291841bd5e72c4a1f45308e7b6f31233872a6b6933347449c54349508
MD5 c13ea5b3e9cfc9ffabc33499953ac6e2
BLAKE2b-256 aa8cb24c3e199dbaaa61ef4c3a25fc9f3fac599b0648fc2b9e4c9e9b949eb7b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page