Skip to main content

A python implementation of OpenNMT

Project description

OpenNMT-py: Open-Source Neural Machine Translation

Build Status Run on FH Documentation Gitter Forum

This is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine translation framework. It is designed to be research friendly to try out new ideas in translation, summary, morphology, and many other domains. Some companies have proven the code to be production ready.

We love contributions. Please consult the Issues page for any Contributions Welcome tagged post.

Before raising an issue, make sure you read the requirements and the documentation examples.

Unless there is a bug, please use the Forum or Gitter to ask questions.


Announcement - OpenNMT-py 2.0

We're happy to announce the upcoming release v2.0 of OpenNMT-py.

The major idea behind this release is the -- almost -- complete makeover of the data loading pipeline. A new 'dynamic' paradigm is introduced, allowing to apply on the fly transforms to the data.

This has a few advantages, amongst which:

  • remove or drastically reduce the preprocessing required to train a model;
  • increase the possibilities of data augmentation and manipulation through on-the fly transforms.

These transforms can be specific tokenization methods, filters, noising, or any custom transform users may want to implement. Custom transform implementation is quite straightforward thanks to the existing base class and example implementations.

You can check out how to use this new data loading pipeline in the updated docs.

All the readily available transforms are described here.

Performance

Given sufficient CPU resources according to GPU computing power, most of the transforms should not slow the training down. (Note: for now, one producer process per GPU is spawned -- meaning you would ideally need 2N CPU threads for N GPUs).

Breaking changes

For now, the new data loading paradigm does not support Audio, Video and Image inputs.

A few features are also dropped, at least for now:

  • audio, image and video inputs;
  • source word features.

For any user that still need these features, the previous codebase will be retained as legacy in a separate branch. It will no longer receive extensive development from the core team but PRs may still be accepted.

Feel free to check it out and let us know what you think of the new paradigm!


Table of Contents

Setup

OpenNMT-py requires:

  • Python >= 3.6
  • Pytorch == 1.6.0

Install OpenNMT-py from pip:

pip install OpenNMT-py

or from the sources:

git clone https://github.com/OpenNMT/OpenNMT-py.git
cd OpenNMT-py
python setup.py install

Note: If you have MemoryError in the install try to use pip with --no-cache-dir.

(Optional) some advanced features (e.g. working pretrained models or specific transforms) requires extra packages, you can install it with:

pip install -r requirements.opt.txt

Features

Quickstart

Full Documentation

Step 1: Prepare the data

To get started, we propose to download a toy English-German dataset for machine translation containing 10k tokenized sentences:

wget https://s3.amazonaws.com/opennmt-trainingdata/toy-ende.tar.gz
tar xf toy-ende.tar.gz
cd toy-ende

The data consists of parallel source (src) and target (tgt) data containing one sentence per line with tokens separated by a space:

  • src-train.txt
  • tgt-train.txt
  • src-val.txt
  • tgt-val.txt

Validation files are used to evaluate the convergence of the training. It usually contains no more than 5k sentences.

$ head -n 3 toy-ende/src-train.txt
It is not acceptable that , with the help of the national bureaucracies , Parliament 's legislative prerogative should be made null and void by means of implementing provisions whose content , purpose and extent are not laid down in advance .
Federal Master Trainer and Senior Instructor of the Italian Federation of Aerobic Fitness , Group Fitness , Postural Gym , Stretching and Pilates; from 2004 , he has been collaborating with Antiche Terme as personal Trainer and Instructor of Stretching , Pilates and Postural Gym .
" Two soldiers came up to me and told me that if I refuse to sleep with them , they will kill me . They beat me and ripped my clothes .

We need to build a YAML configuration file to specify the data that will be used:

# toy_en_de.yaml

## Where the samples will be written
save_data: toy-ende/run/example
## Where the vocab(s) will be written
src_vocab: toy-ende/run/example.vocab.src
tgt_vocab: toy-ende/run/example.vocab.tgt
# Prevent overwriting existing files in the folder
overwrite: False

# Corpus opts:
data:
    corpus_1:
        path_src: toy-ende/src-train.txt
        path_tgt: toy-ende/tgt-train.txt
    valid:
        path_src: toy-ende/src-val.txt
        path_tgt: toy-ende/tgt-val.txt
...

From this configuration, we can build the vocab(s), that will be necessary to train the model:

onmt_build_vocab -config toy_en_de.yaml -n_sample 10000

Notes:

  • -n_sample is required here -- it represents the number of lines sampled from each corpus to build the vocab.
  • This configuration is the simplest possible, without any tokenization or other transforms. See other example configurations for more complex pipelines.

Step 2: Train the model

To train a model, we need to add the following to the YAML configuration file:

  • the vocabulary path(s) that will be used: can be that generated by onmt_build_vocab;
  • training specific parameters.
# toy_en_de.yaml

...

# Vocabulary files that were just created
src_vocab: toy-ende/run/example.vocab.src
tgt_vocab: toy-ende/run/example.vocab.tgt

# Train on a single GPU
world_size: 1
gpu_ranks: [0]

# Where to save the checkpoints
save_model: toy-ende/run/model
save_checkpoint_steps: 500
train_steps: 1000
valid_steps: 500

Then you can simply run:

onmt_train -config toy_en_de.yaml

This configuration will run the default model, which consists of a 2-layer LSTM with 500 hidden units on both the encoder and decoder. It will run on a single GPU (world_size 1 & gpu_ranks [0]).

Before the training process actually starts, the *.vocab.pt together with *.transforms.pt will be dumpped to -save_data with configurations specified in -config yaml file. We'll also generate transformed samples to simplify any potentially required visual inspection. The number of sample lines to dump per corpus is set with the -n_sample flag.

For more advanded models and parameters, see other example configurations or the FAQ.

Step 3: Translate

onmt_translate -model toy-ende/run/model_step_1000.pt -src toy-ende/src-test.txt -output toy-ende/pred_1000.txt -gpu 0 -verbose

Now you have a model which you can use to predict on new data. We do this by running beam search. This will output predictions into toy-ende/pred_1000.txt.

Note:

The predictions are going to be quite terrible, as the demo dataset is small. Try running on some larger datasets! For example you can download millions of parallel sentences for translation or summarization.

Alternative: Run on FloydHub

Run on FloydHub

Click this button to open a Workspace on FloydHub for training/testing your code.

Pretrained embeddings (e.g. GloVe)

Please see the FAQ: How to use GloVe pre-trained embeddings in OpenNMT-py

Pretrained Models

The following pretrained models can be downloaded and used with translate.py.

http://opennmt.net/Models-py/

Acknowledgements

OpenNMT-py is run as a collaborative open-source project. The original code was written by Adam Lerer (NYC) to reproduce OpenNMT-Lua using Pytorch.

Major contributors are: Sasha Rush (Cambridge, MA) Vincent Nguyen (Ubiqus) Ben Peters (Lisbon) Sebastian Gehrmann (Harvard NLP) Yuntian Deng (Harvard NLP) Guillaume Klein (Systran) Paul Tardy (Ubiqus / Lium) François Hernandez (Ubiqus) Linxiao Zeng (Ubiqus) Jianyu Zhan (Shanghai) Dylan Flaute (University of Dayton) and more !

OpenNMT-py belongs to the OpenNMT project along with OpenNMT-Lua and OpenNMT-tf.

Citation

OpenNMT: Neural Machine Translation Toolkit

OpenNMT technical report

@inproceedings{opennmt,
  author    = {Guillaume Klein and
               Yoon Kim and
               Yuntian Deng and
               Jean Senellart and
               Alexander M. Rush},
  title     = {Open{NMT}: Open-Source Toolkit for Neural Machine Translation},
  booktitle = {Proc. ACL},
  year      = {2017},
  url       = {https://doi.org/10.18653/v1/P17-4012},
  doi       = {10.18653/v1/P17-4012}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

OpenNMT-py-2.0.0rc2.tar.gz (161.4 kB view details)

Uploaded Source

Built Distribution

OpenNMT_py-2.0.0rc2-py3-none-any.whl (199.8 kB view details)

Uploaded Python 3

File details

Details for the file OpenNMT-py-2.0.0rc2.tar.gz.

File metadata

  • Download URL: OpenNMT-py-2.0.0rc2.tar.gz
  • Upload date:
  • Size: 161.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for OpenNMT-py-2.0.0rc2.tar.gz
Algorithm Hash digest
SHA256 a5e82f57721063ee3ce081dd7599e1c4017d1f49a6c634b04c2d9b18ffe73a52
MD5 dce8c5e285876a06db19d89b3c983f8a
BLAKE2b-256 b9f4c22121abd757307c65b96854c1612c7943a8398f1b783ce9073d1a2a9fa6

See more details on using hashes here.

File details

Details for the file OpenNMT_py-2.0.0rc2-py3-none-any.whl.

File metadata

  • Download URL: OpenNMT_py-2.0.0rc2-py3-none-any.whl
  • Upload date:
  • Size: 199.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for OpenNMT_py-2.0.0rc2-py3-none-any.whl
Algorithm Hash digest
SHA256 1d0592c922274eafea12c7599efea1185ce92b83ce90f8cc04c1379a3d46055b
MD5 6099bd28ba6f413cdb733d7ac988893c
BLAKE2b-256 f49db0dbbca3406b53182580b39b90dd8d86bdf661ff7dc2b1ccc87f303d9273

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page