A package for collecting and assigning wind turbine metrics
Project description
This library provides a framework for working with large timeseries data from wind plants, such as SCADA. Its development has been motivated by the WP3 Benchmarking (PRUF) project, which aims to provide a reference implementation for plant-level performance assessment.
Analysis routines are grouped by purpose into methods, and these methods in turn rely on more abstract toolkits. In addition to the provided analysis methods, anyone can write their own, which is intended to provide natural growth of tools within this framework.
The library is written around Pandas Data Frames, utilizing a flexible backend so that data loading, processing, and analysis could be performed using other libraries, such as Dask and Spark, in the future.
If you would like to try out the code before installation or simply explore the possibilities, please see our examples on Binder.
Requirements
- Python 3.6-3.8 with pip.
OpenOA should be compatible with newer versions of Python, but one of its dependencies, Shapely, does not yet have binary wheels in pip for Python 3.9 on Mac.
We strongly recommend using the Anaconda Python distribution and creating a new conda environment for OpenOA. You can download Anaconda through their website.
After installing Anaconda, create and activate a new conda environment with the name "openoa-env":
conda create --name openoa-env python=3.8
conda activate openoa-env
Installation:
Clone the repository and install the library and its dependencies using pip:
git clone https://github.com/NREL/OpenOA.git
pip install ./OpenOA
You should now be able to import operational_analysis from the Python interpreter:
python
>>> import operational_analysis
Common Installation Issues:
- In Windows you may get an error regarding geos_c.dll. To fix this install Shapely using:
conda install Shapely
- In Windows, an ImportError regarding win32api can also occur. This can be resolved by fixing the version of pywin32 as follows:
pip install --upgrade pywin32==255
Development
Development dependencies are provided through the develop extra flag in setup.py. Here, we install OpenOA, with development dependencies, in editable mode:
pip install -e ./OpenOA[develop]
Optionally, activate git precommit to automatically run the linting pipeline for committed files:
pre-commit install
Example Notebooks and Data
The example data will be automaticaly extracted as needed by the tests. To manually extract the example data for use with the example notebooks, use the following command:
unzip examples/data/la_haute_borne.zip -d examples/data/la_haute_borne/
In addition, you will need to install the packages required for running the examples with the following command:
pip install -r ./OpenOA/examples/requirements.txt
The example notebooks are located in the examples
directory. We suggest installing the Jupyter notebook server to run the notebooks interactively. The notebooks can also be viewed statically on Read The Docs.
jupyter notebook
Testing
Tests are written in the Python unittest framework and are runnable using pytest. There are two types of tests, unit tests (located in test/unit
) run quickly and are automatically for every pull request to the OpenOA repository. Regression tests (located at test/regression
) provide a comprehensive suite of scientific tests that may take a long time to run (up to 20 minutes on our machines). These tests should be run locally before submitting a pull request, and are run weekly on the develop and main branches.
To run all unit and regresison tests:
pytest
To run unit tests only:
pytest test/unit
To run all tests and generate a code coverage report
pytest --cov=operational_analysis
Documentation
Documentation is automatically built by, and visible through, Read The Docs.
You can build the documentation with sphinx, but will need to ensure Pandoc is installed on your computer first:
cd sphinx
pip install -r requirements.txt
make html
Contributors
Alphabetically: Nathan Agarwal, Nicola Bodini, Anna Craig, Jason Fields, Rob Hammond, Travis Kemper, Joseph Lee, Monte Lunacek, John Meissner, Mike Optis, Jordan Perr-Sauer, Sebastian Pfaffel, Caleb Phillips, Charlie Plumley, Eliot Quon, Sheungwen Sheng, Eric Simley, and Lindy Williams.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file OpenOA-2.2.tar.gz
.
File metadata
- Download URL: OpenOA-2.2.tar.gz
- Upload date:
- Size: 78.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 52aeb07a45925f12d2b979ade74935b49cbff6c1a7ed06b7ee8a52cf1883be35 |
|
MD5 | d05bbf4962825f67e0dd4483bc8b696c |
|
BLAKE2b-256 | ae8b6635080485d76d76e8989af85a2747302d395107296e0ea6057cbf3697ad |
Provenance
File details
Details for the file OpenOA-2.2-py3-none-any.whl
.
File metadata
- Download URL: OpenOA-2.2-py3-none-any.whl
- Upload date:
- Size: 91.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ddbe0bba33b616dca38c4c48acbc854a48cbba09a500a8a3fc6d536f40177c1 |
|
MD5 | eebd40f1f871b8d990a7daaf0cc80b9d |
|
BLAKE2b-256 | 3e13d2cc16d3c3df39cd44b35cae17a3fa619f7dc75c6ee4ea6bd2c11ac2bc27 |