Optical Communications Algorithms with Python
Project description
.. image:: ../../figures/logo_OptiCommPy.jpg
:width: 75%
:align: center
OptiCommPy is a Python-based framework to simulate systems, subsystems, and components of fiber optic communication systems, for educational and research purposes.
.. image:: ../../figures/eyeDisp.gif
:width: 45%
.. image:: ../../figures/40GOOK_spectrum.jpg
:width: 45%
.. image:: ../../figures/DSP.jpg
:width: 600px
:align: center
|PyPI| |PyPI - Downloads| |Documentation Status| |DOI|
Available features
-
Several digital modulations available (M-PAM, square M-QAM, M-PSK, OOK) to simulate IM-DD and coherent optical systems.
-
Numerical models to simulate optical transmitters, optical amplification, nonlinear propagation over optical fibers, and optical receivers.
-
CPU and GPU-based implementations of the
split-step Fourier Method <https://en.wikipedia.org/wiki/Split-step_method>
__ to simulate polarization multiplexed WDM transmission. -
Standard digital signal processing (DSP) blocks employed in coherent optical receivers, such as:
- Signal resampling.
- Matched filtering.
- Clock recovery.
- Electronic chromatic dispersion compensation (EDC).
- Several NxN MIMO adaptive equalization algorithms.
- Carrier phase recovery algorithms.
-
For most of the cases,
Numba <https://numba.pydata.org/>
__ is used to speed up the core DSP functions. -
Evaluate transmission performance with metrics such as:
- Bit-error-rate (BER).
- Symbol-error-rate (SER).
- Error vector magnitude (EVM).
- Mutual information (MI).
- Generalized mutual information (GMI).
- Normalized generalized mutual information (NGMI).
-
Visualization of the spectrum of electrical/optical signals, signal constellations, and eyediagrams.
How can I contribute?
If you want to contribute to this project, implement the feature you want and send me a pull request. If you want to suggest new features or discuss anything related to OptiCommPy, please get in touch with me (edsonporto88@gmail.com).
Requirements/Dependencies
- python>=3.2
- numpy>=1.24.4
- scipy>=1.13.0
- matplotlib>=3.7.0
- numba>=0.54.1,<=0.57.0
- tqdm>=4.64.1
- simple-pid>=1.0.1
- mpl-scatter-density>=0.7.0
- sphinx-rtd-theme>=1.2.2
- nbsphinx>=0.9.3
- nbsphinx-link>=1.3.0
- cupy-cuda12x >= 13.1.0 (optional, in case GPU processing is desired)
Installation
Using pip:
::
pip install OptiCommPy
Cloning the repository from GitHub:
::
$ git clone https://github.com/edsonportosilva/OptiCommPy.git $ cd OptiCommPy $ pip install .
Documentation
We are continuously making efforts to improve the code documentation.
You can find the latest documentation in
opticommpy.readthedocs.io <https://opticommpy.readthedocs.io/en/latest/index.html>
__.
Citing this repository
Edson Porto da Silva, Adolfo Herbster, Carlos Daniel Fontes da Silva, & Joaquin Matres. (2023). edsonportosilva/OptiCommPy: v0.7.0-alpha (v0.7.0-alpha). Zenodo. https://doi.org/10.5281/zenodo.10304945
.. |PyPI| image:: https://img.shields.io/pypi/v/OptiCommPy?label=pypi%20package .. |PyPI - Downloads| image:: https://img.shields.io/pypi/dm/OptiCommPy .. |Documentation Status| image:: https://readthedocs.org/projects/opticommpy/badge/?version=latest :target: https://opticommpy.readthedocs.io/en/latest/?badge=latest .. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.10304945.svg :target: https://doi.org/10.5281/zenodo.10304945
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.