Skip to main content

A flexible genetic algorithm library written in Python3.

Project description

OptivolutionPy

A flexible genetic algorithm library written purly in Python3.

Installation

For python3, simply run:

$ pip3 install OptivolutionPy

Or clone this repository and run python3 setup.py install from within the project directory. e.g.:

$ git clone https://github.com/Mhmd-Hisham/OptivolutionPy.git
$ cd OptivolutionPy
$ python3 setup.py install

Advanced Example

Smart Ants using OptivolutionPy & Processing3. check this repo for more details.

SmartAntsDemo

Simple example

Solving the one-dimensional knapsack problem:

#!/usr/bin/env python3

import random

from optivolution.population import Population
from optivolution.chromosome import Chromosome

class OneDimensinalKnapsack(Chromosome):
    """ Inidividual knapsack object. """
    maximum_weight = 15
    knapsack_data = [{'name': 'box1', 'value': 4, 'weight': 12},
                     {'name': 'box2', 'value': 2, 'weight': 1},
                     {'name': 'box3', 'value': 10, 'weight': 4},
                     {'name': 'box4', 'value': 1, 'weight': 1},
                     {'name': 'box5', 'value': 2, 'weight': 2}]

    def __init__(self, genes_length=len(knapsack_data), genes=[]):
        super().__init__(genes_length, genes)

    @Chromosome.fitness_property
    def fitness(self):        
        """ Defining the fitness function. """
        # Use the knapsack value as the fitness value
        total_value = 0
        total_weight = 0

        for i in range(self.genes_length):
            if (self.genes[i] == True):
                total_value += self.knapsack_data[i]['value']
                total_weight += self.knapsack_data[i]['weight']

        if total_weight > self.maximum_weight:
            total_value = 0

        return total_value

    def random_gene(self):
        """ Defining the random gene. """
        return random.choice((0, 1))

class KnapscakPopulation(Population):
    tournament_sample_percentage = 10

    def random_individual(self):
        """ Defining the random individual in the population. """
        return OneDimensinalKnapsack()

def main():
    population = KnapscakPopulation(population_size=20)    
    population.run(20)

    print(f"Generation {population.generation_number}")
    best = population.get_best_individual()

    # The optimal answer for this test case is
    # (15, [0, 1, 1, 1, 1])
    print((best.fitness, best.genes))

if __name__ == "__main__":
    main()

Output:

(15, [0, 1, 1, 1, 1])

Meta

Mohamed Hisham – G-Mail | GitHub | LinkedIn

This project is licensed under the GNU GPLv3 License - check LICENSE for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

OptivolutionPy-1.0.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

OptivolutionPy-1.0.1-py3-none-any.whl (17.6 kB view details)

Uploaded Python 3

File details

Details for the file OptivolutionPy-1.0.1.tar.gz.

File metadata

  • Download URL: OptivolutionPy-1.0.1.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.1.0 requests-toolbelt/0.9.1 tqdm/4.34.0 CPython/3.6.8

File hashes

Hashes for OptivolutionPy-1.0.1.tar.gz
Algorithm Hash digest
SHA256 c24cbd7c38a665d55b4fb8b4094814be0e3947c09fe4a70b3dd6af2876c4ff2a
MD5 773508a6250d56a06bad98a2017179a5
BLAKE2b-256 98a29d8364cd3d442f1f715440f3c522697005994bba8dc4eabe2e2861ceef67

See more details on using hashes here.

File details

Details for the file OptivolutionPy-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: OptivolutionPy-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 17.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.1.0 requests-toolbelt/0.9.1 tqdm/4.34.0 CPython/3.6.8

File hashes

Hashes for OptivolutionPy-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 64f7da38edfd55b1f313552c7f2ce3c65789c6186b4ec500dba90bde51bbb72d
MD5 4d24c88a36b015cc3e50a4efe6a51e55
BLAKE2b-256 fe253b3c4f59bd1933b67af829eb72b153d58e60a290b6e1c68c0c0eadabc423

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page