Orange, a component-based data mining framework.
Project description
[![Join the chat at https://gitter.im/biolab/orange3](https://badges.gitter.im/biolab/orange3.svg)](https://gitter.im/biolab/orange3?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[![build: passing](https://img.shields.io/travis/biolab/orange3.svg)](https://travis-ci.org/biolab/orange3) [![codecov](https://codecov.io/gh/biolab/orange3/branch/master/graph/badge.svg)](https://codecov.io/gh/biolab/orange3)
[Orange] is a component-based data mining software. It includes a range of data visualization, exploration, preprocessing and modeling techniques. It can be used through a nice and intuitive user interface or, for more advanced users, as a module for the Python programming language.
This is a development version of Orange 3. The stable version 2.7 is still available ([binaries] and [sources]).
[Orange]: http://orange.biolab.si/ [binaries]: http://orange.biolab.si/orange2/ [sources]: https://github.com/biolab/orange
Installing
Orange requires Python 3.4 or newer. To build it and install it in a development environment, run:
# Install some build requirements via your system’s package manager sudo apt install virtualenv git build-essential python3-dev
# Create a separate Python environment for Orange and its dependencies … virtualenv –python=python3 –system-site-packages orange3venv # … and make it the active one source orange3venv/bin/activate
# Clone the repository and move into it git clone https://github.com/biolab/orange3.git cd orange3
# Install Qt dependencies for the GUI pip install PyQt5 # Of if Python <= 3.4 and/or with package manager # sudo apt install python3-pyqt4
# Install other minimum required dependencies pip install -r requirements-core.txt # For Orange Python library pip install -r requirements-gui.txt # For Orange GUI
pip install -r requirements-sql.txt # To use SQL support pip install -r requirements-opt.txt # Optional dependencies, may fail
# Finally install Orange in editable/development mode. pip install -e .
Installation of SciPy and qt-graph-helpers is sometimes challenging because of their non-python dependencies that have to be installed manually. More detailed, if mostly obsolete, guides for some platforms can be found in the [wiki].
Anaconda Installation
First, install [Anaconda] for your OS (Python version 3.5+). Create virtual environment for Orange:
conda create python=3 –name orange3
In your Anaconda Prompt add conda-forge to your channels:
conda config –add channels conda-forge
This will enable access to the latest Orange release. Then install Orange3:
conda install orange3
[Anaconda]: https://www.continuum.io/downloads
Starting Orange GUI
Orange GUI requires PyQt, which is not pip-installable in Python 3. You have to download and install it system-wide. Make sure that the virtual environment for orange is created with –system-site-packages, so it will have access to the installed PyQt4.
To start Orange GUI from the command line, assuming it was successfully installed, run:
orange-canvas # or python3 -m Orange.canvas
Append –help for a list of program options.
If you’re running Orange with PyQt5 or if you have multiple PyQt versions available, set the environmental variable QT_API to the PyQt version to use, e.g.:
export QT_API=pyqt5 orange-canvas
Compiling on Windows
Get appropriate wheels for missing libraries. You will need [numpy+mkl] and [scipy].
[numpy+mkl]: http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy [scipy]: http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
Install them with
pip install some-wheel.whl
Install [Visual Studio compiler]. Then go to Orange3 folder and run:
[Visual Studio compiler]: http://landinghub.visualstudio.com/visual-cpp-build-tools
python setup.py build_ext -i –compiler=msvc install
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for Orange3-3.11.0-cp36-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6cbb42f7a05ea55ef3ec302b202d8a54d83819cb542f254ba55c8b03c44f2d36 |
|
MD5 | 191f1920406bde6fc4e218c706433db6 |
|
BLAKE2b-256 | b8edac1f383f0b757a48d4330df0bbc04a31ef6b50b7ed57cf655c21527e44db |
Hashes for Orange3-3.11.0-cp36-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ee70aa1e0066bbf0f01bbd717f4101555c229b82a7e8f58cefaddb203d62c60 |
|
MD5 | 25db459faebc6bbaa530bded43ab3756 |
|
BLAKE2b-256 | 0667f1b5cbe3ee7973c2fcfb5848d1250c832cddcce2e67fc27315153913ee55 |
Hashes for Orange3-3.11.0-cp36-cp36m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9cd3b8310fea2fc1e7bdf08736f75d52234715f34d70a786383f997891ce1d3 |
|
MD5 | 07e0b922b858aac543ef8cbc6159dac5 |
|
BLAKE2b-256 | fb8e3dd7402b68a6888965ea4f431cafc1a6b2d1a5a8099f943b36359fb8f231 |
Hashes for Orange3-3.11.0-cp35-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d19d9126eeb87545164c8103857b6927271e343d3994903c554b42a87dae960 |
|
MD5 | d4d9a09c2d45700f4578d03ca98e0884 |
|
BLAKE2b-256 | fdbed5ae0fc984c65eb06793e5b13f36a9a212b4cf4377fe66530684a1891dc2 |
Hashes for Orange3-3.11.0-cp35-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7769c09d164f8ec3a64106e0e863aaa15be82618a74044a25290e7f92157d111 |
|
MD5 | df850a2a7a5b9d4c53ef0e6b49426c1b |
|
BLAKE2b-256 | a7f714868ab34802ce5593c9485af4da489eeff374c96c5936a99e831d163648 |
Hashes for Orange3-3.11.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7d2feb1a976324bfb41e2e15eae4df034e02d8dd6e6e80ce53b25aafcda30414 |
|
MD5 | a254e82118d4f038b9861567b8c900ca |
|
BLAKE2b-256 | 9ab7d3bb7976b441315810c85e9217fe165b69c033db6aca72c673a6daa2d1c4 |
Hashes for Orange3-3.11.0-cp34-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6642e32ffb2917fa6f48d505937e919b1d1ce125449644c4436a877dfc2dbb69 |
|
MD5 | 318b4e8b3c02481d997b0447fbeab0e6 |
|
BLAKE2b-256 | 3ef4668aa01ae0b822e9df6f282819a64693ba5f4887893a34185835c2ea9baa |
Hashes for Orange3-3.11.0-cp34-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec3ccf2d071db804461d96016eb79cae670756e3f77f34ac9c24befc69aa8eaa |
|
MD5 | bae5dae2ce25139cac8e8b28038f5386 |
|
BLAKE2b-256 | 90846193fb6149cea4ffc08b574b512ce99d78eeebffb85aec2ed10dd0e486b0 |
Hashes for Orange3-3.11.0-cp34-cp34m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e886ca1d6997d26ac8aba8dfc1c6ade0e9e832e8e85c494d6b7088035773ffb |
|
MD5 | c0cb219192aaba4813b67dd14f6f3892 |
|
BLAKE2b-256 | 29dafbf04c54fcbbb53ebe2131384378fd629e24b8cee720e2a744780ea89304 |