Orange, a component-based data mining framework.
Project description
[![Join the chat at https://gitter.im/biolab/orange3](https://badges.gitter.im/biolab/orange3.svg)](https://gitter.im/biolab/orange3?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[![build: passing](https://img.shields.io/travis/biolab/orange3.svg)](https://travis-ci.org/biolab/orange3) [![codecov](https://codecov.io/gh/biolab/orange3/branch/master/graph/badge.svg)](https://codecov.io/gh/biolab/orange3)
[Orange] is a component-based data mining software. It includes a range of data visualization, exploration, preprocessing and modeling techniques. It can be used through a nice and intuitive user interface or, for more advanced users, as a module for the Python programming language.
This is a development version of Orange 3. The stable version 2.7 is still available ([binaries] and [sources]).
[Orange]: http://orange.biolab.si/ [binaries]: http://orange.biolab.si/orange2/ [sources]: https://github.com/biolab/orange
Installing
Orange requires Python 3.4 or newer. To build it and install it in a development environment, run:
# Install some build requirements via your system’s package manager sudo apt install virtualenv git build-essential python3-dev
# Create a separate Python environment for Orange and its dependencies … virtualenv –python=python3 –system-site-packages orange3venv # … and make it the active one source orange3venv/bin/activate
# Clone the repository and move into it git clone https://github.com/biolab/orange3.git cd orange3
# Install Qt dependencies for the GUI pip install PyQt5 # Of if Python <= 3.4 and/or with package manager # sudo apt install python3-pyqt4
# Install other minimum required dependencies pip install -r requirements-core.txt # For Orange Python library pip install -r requirements-gui.txt # For Orange GUI
pip install -r requirements-sql.txt # To use SQL support pip install -r requirements-opt.txt # Optional dependencies, may fail
# Finally install Orange in editable/development mode. pip install -e .
Installation of SciPy and qt-graph-helpers is sometimes challenging because of their non-python dependencies that have to be installed manually. More detailed, if mostly obsolete, guides for some platforms can be found in the [wiki].
Anaconda Installation
First, install [Anaconda] for your OS (Python version 3.5+). Create virtual environment for Orange:
conda create python=3 –name orange3
In your Anaconda Prompt add conda-forge to your channels:
conda config –add channels conda-forge
This will enable access to the latest Orange release. Then install Orange3:
conda install orange3
[Anaconda]: https://www.continuum.io/downloads
Starting Orange GUI
Orange GUI requires PyQt, which is not pip-installable in Python 3. You have to download and install it system-wide. Make sure that the virtual environment for orange is created with –system-site-packages, so it will have access to the installed PyQt4.
To start Orange GUI from the command line, assuming it was successfully installed, run:
orange-canvas # or python3 -m Orange.canvas
Append –help for a list of program options.
If you’re running Orange with PyQt5 or if you have multiple PyQt versions available, set the environmental variable QT_API to the PyQt version to use, e.g.:
export QT_API=pyqt5 orange-canvas
Compiling on Windows
Get appropriate wheels for missing libraries. You will need [numpy+mkl] and [scipy].
[numpy+mkl]: http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy [scipy]: http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
Install them with
pip install some-wheel.whl
Install [Visual Studio compiler]. Then go to Orange3 folder and run:
[Visual Studio compiler]: http://landinghub.visualstudio.com/visual-cpp-build-tools
python setup.py build_ext -i –compiler=msvc install
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for Orange3-3.16.0-cp37-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 307551fe899d0c6868263402bb7489c74926ccc00d204e8d9f3d6802bd3f0d81 |
|
MD5 | 88c8048f3edb17762bab924f11361d05 |
|
BLAKE2b-256 | 929244b444588e07c35eb7fb8372f4a229bf2e20f8d6ac3a23733aa156fce46c |
Hashes for Orange3-3.16.0-cp37-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd073b6a3c2addec4dd0823ab2775d498d47cf0c0798f949a4b4b42aee185f1f |
|
MD5 | c26a22edb3733302787d19ca7e7ee12f |
|
BLAKE2b-256 | 5e391000726478091741d1930a223e77ac4ace177286e6cc3cf19f145e6e827c |
Hashes for Orange3-3.16.0-cp37-cp37m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 12c8cc63b47ab757f22f60c7576cc0e874fb68ab86b2d05ed9a769d2377f9522 |
|
MD5 | ed7f333b9f322acf7d6c18b6e8273738 |
|
BLAKE2b-256 | 3c23103dbd0366a75e2b3638ad5a77b349f98527f3b664ad7797c37efa0fb782 |
Hashes for Orange3-3.16.0-cp36-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71972e3b266edd155b772328ba160636c8596335fab179d1b96446724521db1f |
|
MD5 | 2f2055eff8c256fbae7dff6981daf70f |
|
BLAKE2b-256 | 995209a59b162cb46e64c7e43ca51c31a5af85e68d77c34e7368d6683a461c52 |
Hashes for Orange3-3.16.0-cp36-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9b04e14b8455d01b9c8b8013c1c8cb00fb542d38f7162608cfaadbe9db5f20ed |
|
MD5 | 5fbb3d25124edb3016ebaaafa7896b46 |
|
BLAKE2b-256 | e144ab0a58347e264d10175efe28fa901766bebeaaac8703c99deed27d363e35 |
Hashes for Orange3-3.16.0-cp36-cp36m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 470823b872d354f8f0b742e0098c4b4cf6437e2d741a15744bc791d5f74adc05 |
|
MD5 | 900c70d814e5bc94a634e757a472e3a9 |
|
BLAKE2b-256 | c71bb58de3ec15df1f45ef60dda64f990b4088f5873cdff01ec7210dc63e72f7 |
Hashes for Orange3-3.16.0-cp35-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a314b981ee57d32a6a1f4e64bb1de501aac5d529d74e40e0c4a509ba54c98a4 |
|
MD5 | 85b39430770fa8946b909f26c3364ac7 |
|
BLAKE2b-256 | fa500deab77e6ab5d57672b930cace2b45653925fbfd9944b6a4ab03f5f10ec5 |
Hashes for Orange3-3.16.0-cp35-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 467760591e30f406e38a91ffa93dcc6c2f8974f231a5528dfa43070804dd7cc0 |
|
MD5 | 4b9d96a10d02209a9d6b2fe1ff0e9832 |
|
BLAKE2b-256 | 601481454fb8539c65b9ffe9fc5cd360b9d664a9a101acbd1ad10ea032004f39 |
Hashes for Orange3-3.16.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3cc2ea6dd6e564de3eac0b2c83fb5fcd7f307a37dfaf4efd27cb41d4c274d554 |
|
MD5 | 60cc1df7cc9d7b9b7e1ddb2211836e2b |
|
BLAKE2b-256 | 4c1723e99bf4a104fbcb7e18580d59768690ea59538cf1d0f8c8f2491c401fcc |
Hashes for Orange3-3.16.0-cp34-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f2a3e12e63ffd3988cd59f2cdc31464cc7804f4db7bb36ffc6931736ace7d9e8 |
|
MD5 | dcc42a18e8fc3d3a0c5971a3d136e982 |
|
BLAKE2b-256 | 52bf39c5541ff5bfc85deb506f49da45d29e88c3b05c2668411e947465dd9c84 |
Hashes for Orange3-3.16.0-cp34-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb05f54a5c77539dbe6b6d06419f71a929a3a061ace2fc40b5f31d96a6eedd04 |
|
MD5 | 74a900fd9538baad55034f62423c9fbf |
|
BLAKE2b-256 | d557cce63b4ae8022d6feb5ccd2e876c1e8f47102091be95673f80bc9db560e0 |
Hashes for Orange3-3.16.0-cp34-cp34m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f06037de5925b234dd7b7d12be01d08bfc917332281ce3f24b1d5f427f777d5 |
|
MD5 | 614615a8a1ef34b65c5e002a1c99ff03 |
|
BLAKE2b-256 | 14a217e24a10530414be38e6c4b61b44975bbebc4c47a6891ef76adcac06f406 |