Orange, a component-based data mining framework.
Project description
[![Join the chat at https://gitter.im/biolab/orange3](https://badges.gitter.im/biolab/orange3.svg)](https://gitter.im/biolab/orange3?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![build: passing](https://img.shields.io/travis/biolab/orange3.svg)](https://travis-ci.org/biolab/orange3) [![codecov](https://codecov.io/gh/biolab/orange3/branch/master/graph/badge.svg)](https://codecov.io/gh/biolab/orange3)
[Orange] is a component-based data mining software. It includes a range of data visualization, exploration, preprocessing and modeling techniques. It can be used through a nice and intuitive user interface or, for more advanced users, as a module for the Python programming language.
This is the latest version of Orange (for Python 3). The deprecated version of Orange 2.7 (for Python 2.7) is still available ([binaries] and [sources]).
[Orange]: https://orange.biolab.si/ [binaries]: https://orange.biolab.si/orange2/ [sources]: https://github.com/biolab/orange
Installing with Miniconda / Anaconda
Orange requires Python 3.6 or newer.
First, install [Miniconda] for your OS. Create virtual environment for Orange:
conda create python=3 –name orange3
In your Anaconda Prompt add conda-forge to your channels:
conda config –add channels conda-forge
This will enable access to the latest Orange release. Then install Orange3:
conda install orange3
[Miniconda]: https://docs.conda.io/en/latest/miniconda.html
To install the add-ons, follow a similar recipe:
conda install orange3-<addon name>
See specific add-on repositories for details.
Installing with pip
To install Orange with pip, run the following.
# Install some build requirements via your system’s package manager sudo apt install virtualenv git build-essential python3-dev
# Create a separate Python environment for Orange and its dependencies … virtualenv –python=python3 –system-site-packages orange3venv # … and make it the active one source orange3venv/bin/activate
# Clone the repository and move into it git clone https://github.com/biolab/orange3.git cd orange3
# Install Qt dependencies for the GUI pip install PyQt5
# Install other minimum required dependencies pip install -r requirements-core.txt # For Orange Python library pip install -r requirements-gui.txt # For Orange GUI
pip install -r requirements-sql.txt # To use SQL support pip install -r requirements-opt.txt # Optional dependencies, may fail
# Finally install Orange in editable/development mode. pip install -e .
Installation of SciPy and qt-graph-helpers is sometimes challenging because of their non-python dependencies that have to be installed manually. More detailed, if mostly obsolete, guides for some platforms can be found in the [wiki].
[wiki]: https://github.com/biolab/orange3/wiki
### Missing WebKit/WebEngine
Some distributions of PyQt5 come without WebKit or WebEngine, required by some add-ons and for reporting. Running pip install PyQtWebEngine may solve this issue.
Starting Orange GUI
To start Orange GUI from the command line, run:
orange-canvas # or python3 -m Orange.canvas
Append –help for a list of program options.
Compiling on Windows
Get appropriate wheels for missing libraries. You will need [numpy+mkl] and [scipy].
[numpy+mkl]: http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy [scipy]: http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
Install them with
pip install <wheel name>.whl
Install [Visual Studio compiler]. Then go to Orange3 folder and run:
[Visual Studio compiler]: https://developer.microsoft.com/en-us/windows/downloads
python setup.py build_ext -i –compiler=msvc install
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for Orange3-3.21.0-cp37-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e41d150bf9dd64f6c77ebe6728d50ef9069a0d94185203e4acf4ef2ef73499f8 |
|
MD5 | adba5aa4486d87ae9b230ee7efe075c5 |
|
BLAKE2b-256 | 46d5c4cccac75115e332b60abf6a5f2a23cd0499450cf2cf486d2d0e039232ee |
Hashes for Orange3-3.21.0-cp37-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b48c4c663d6d3191328bf43b4caa92448f21e23b50b0556a8991a586dce70ab |
|
MD5 | db9032ca8428f2644255517db243de5f |
|
BLAKE2b-256 | afbdcdec94fcab34381552cb6930bd7596dac016e77d228938aec17cb270b826 |
Hashes for Orange3-3.21.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2443af96c5c2bab4ed9d7fc85189a4b41a105fac11f274457873ea0d70ed7b8 |
|
MD5 | 7cedb1c577b3bad86ddcd251acaf7269 |
|
BLAKE2b-256 | a3a12e0632837a2b73fb46d1cbd33491d51555e68fb24a162a7b1b44b82f3c11 |
Hashes for Orange3-3.21.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d57bacde5ed285f072f0e50ec4b2da639f2602080963d0de5db8a01ddbdd5067 |
|
MD5 | f37aecabd42527516876037c363f7962 |
|
BLAKE2b-256 | a0f079eca4bf6bab2ddad825a977247e0087edb1008b81ba43cf7b21b43b6a58 |
Hashes for Orange3-3.21.0-cp36-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 06bbbfc2e73811db4092ac3cdf90a0ee4e6123c6fb6c226b92dd0a4316d8b677 |
|
MD5 | 9586f61a4b61b6ce97270aa430d03c30 |
|
BLAKE2b-256 | ba60c4dfc3d207d043497ea66cc55dbf0ef7bbd3e8012967eae174ecdc3bb347 |
Hashes for Orange3-3.21.0-cp36-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | de7a1fd5f70da9337cdcb7cba6f1d0e9eacbff8273186e152f5475c945d5244c |
|
MD5 | d4718254ee96218e6430e2dea4531ab6 |
|
BLAKE2b-256 | ac1ef347afbeee48f35f913d9747c50f16b6fcf03b371bfb6280fe9b0c6966c0 |
Hashes for Orange3-3.21.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 236433aec9bc339a79f15c44dfd54090654a0329abfce88d289210897e8174ab |
|
MD5 | c06521232f86c75a9459f2a0288626ff |
|
BLAKE2b-256 | f230f13fd1e9e94ec91a16627f9ecc8520dad73307dddb9725a0634dc66c04ca |
Hashes for Orange3-3.21.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb28080491d9105e4af323de3163c4455678eca4d3426bd5f07d32484ff077bd |
|
MD5 | 8ba92fd35ea7a1acc9273f612d0f5a44 |
|
BLAKE2b-256 | 92ed59254a29f42d6d89ea6e9105432bead40ea2bc4577fe355b1f446e48068c |