Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
PACMaN.predict(cif_file="./test/Cu-BTC.cif",model_name="MOF",charge_type="DDEC6",digits=10,atom_type=True,neutral=True)
  • cif_file: cif file (without partial atomic charges) [cif path]
  • model-name (default: MOF): MOF or COF
  • charge-type (default: DDE6): DDEC6, Bader or CM5
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.

Website & Zenodo

PACMAN-APPlink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{,
    title={PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials using Crystal Graph Convolution Network},
    journal={Journal of Chemical Theory and Computation},
    author={Zhao, Guobin and Chung, Yongchul},
    year={2024},
}

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-0.0.9.tar.gz (15.9 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-0.0.9-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-0.0.9.tar.gz.

File metadata

  • Download URL: PACMAN-charge-0.0.9.tar.gz
  • Upload date:
  • Size: 15.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-0.0.9.tar.gz
Algorithm Hash digest
SHA256 e71cae700efa4aac38a16feb190c6cfd5f3aded74875456b10f0b654794d0b9b
MD5 de9a3c3490d56ebcd87a13225e852bd3
BLAKE2b-256 51d0a655b14016dce5dace5184c6e5f4d319c7eff5c5c1149d83ad254f0f7e3d

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 16.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 dff99a0348d066d2edd03c65b6840d0ca41a154eedf59d9fa833a67fad1e27be
MD5 3d141736205525905e26494f8bc424ee
BLAKE2b-256 5cbc8fda71e5b561fcb69b22ae4f0f46529dc7706e0ef435a97272c9411420d0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page