Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)
Project description
PACMAN
A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)
Usage
from PACMANCharge import pmcharge
PACMaN.predict(cif_file="./test/Cu-BTC.cif",model_name="MOF",charge_type="DDEC6",digits=10,atom_type=True,neutral=True)
- cif_file: cif file (without partial atomic charges) [cif path]
- model-name (default: MOF): MOF or COF
- charge-type (default: DDE6): DDEC6, Bader or CM5
- digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
- atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
- neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.
Website & Zenodo
PACMAN-APPlink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.
Reference
If you use PACMAN Charge, please cite this paper:
@article{,
title={PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials using Crystal Graph Convolution Network},
journal={Journal of Chemical Theory and Computation},
author={Zhao, Guobin and Chung, Yongchul},
year={2024},
}
Bugs
If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com
.
Group: Molecular Thermodynamics & Advance Processes Laboratory
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
PACMAN-charge-0.0.9.tar.gz
(15.9 kB
view details)
Built Distribution
File details
Details for the file PACMAN-charge-0.0.9.tar.gz
.
File metadata
- Download URL: PACMAN-charge-0.0.9.tar.gz
- Upload date:
- Size: 15.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e71cae700efa4aac38a16feb190c6cfd5f3aded74875456b10f0b654794d0b9b |
|
MD5 | de9a3c3490d56ebcd87a13225e852bd3 |
|
BLAKE2b-256 | 51d0a655b14016dce5dace5184c6e5f4d319c7eff5c5c1149d83ad254f0f7e3d |
Provenance
File details
Details for the file PACMAN_charge-0.0.9-py3-none-any.whl
.
File metadata
- Download URL: PACMAN_charge-0.0.9-py3-none-any.whl
- Upload date:
- Size: 16.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dff99a0348d066d2edd03c65b6840d0ca41a154eedf59d9fa833a67fad1e27be |
|
MD5 | 3d141736205525905e26494f8bc424ee |
|
BLAKE2b-256 | 5cbc8fda71e5b561fcb69b22ae4f0f46529dc7706e0ef435a97272c9411420d0 |