Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
PACMaN.predict(cif_file="./test/Cu-BTC.cif",model_name="MOF",charge_type="DDEC6",digits=10,atom_type=True,neutral=True)
  • cif_file: cif file (without partial atomic charges) [cif path]
  • model-name (default: MOF): MOF or COF
  • charge-type (default: DDE6): DDEC6, Bader or CM5
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.

Website & Zenodo

PACMAN-APPlink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{,
    title={PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials using Crystal Graph Convolution Network},
    journal={Journal of Chemical Theory and Computation},
    author={Zhao, Guobin and Chung, Yongchul},
    year={2024},
}

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-0.1.2.tar.gz (15.9 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-0.1.2-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-0.1.2.tar.gz.

File metadata

  • Download URL: PACMAN-charge-0.1.2.tar.gz
  • Upload date:
  • Size: 15.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-0.1.2.tar.gz
Algorithm Hash digest
SHA256 a5b65102325e893b94372704a19bfe59349555fa41b3a779d6932aca1776aa36
MD5 fbcab6d4e8b13587bc661a1a526f411a
BLAKE2b-256 6cdc224d74a7f1769f5c6323eea282d06c3283a4575dde1d7956d4b01a04378c

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 16.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e64399ecf7fe29f0a70babbc8828f0244834689473425b56a2cfb7f79056d90c
MD5 43a89f35e201e1cbff9a17aa12127517
BLAKE2b-256 d3a1a9e23559ddc301ebec9ff2319a8adf8dbccb02b6872e9eb22db9a407305c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page