Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
PACMaN.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=10,atom_type=True,neutral=True)
  • cif_file: cif file (without partial atomic charges) [cif path]
  • charge-type (default: DDE6): DDEC6, Bader or CM5
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.

Website & Zenodo

PACMAN-APPlink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{,
    title={PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials using Crystal Graph Convolution Network},
    journal={Journal of Chemical Theory and Computation},
    author={Zhao, Guobin and Chung, Yongchul},
    year={2024},
}

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-0.1.8.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-0.1.8-py3-none-any.whl (15.7 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-0.1.8.tar.gz.

File metadata

  • Download URL: PACMAN-charge-0.1.8.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-0.1.8.tar.gz
Algorithm Hash digest
SHA256 4ba50eb92f7a59bfa087a23a8f9f8d474272350c05dcb02d3453aa162de0ede7
MD5 d6cc90d30cd9d439c319111a38d23bf0
BLAKE2b-256 19b4c814e42f6db63c0651790c1dfdd9107ebb8931bc9aaf05a5ecf417c38918

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 2a40720fbb168d1f52fff8480eb742bc512bdd453614eb3b1c101a6e480d52c0
MD5 4a1900580d39a6a207e3a9822e459b2e
BLAKE2b-256 23839c634ed8eeccb1b3a38a9964b8712dbfb10e802233907250bafcdff3a514

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page