Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
pmcharge.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=6,atom_type=False,neutral=False)
  • cif_file: cif file (without partial atomic charges) [cif path]
  • charge-type (default: DDE6): DDEC6, Bader, CM5 or REPEAT
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.

Website & Zenodo

PACMAN-APPlink
github repositorylink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{,
    title={PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials based on Crystal Graph Convolution Network},
    author={Zhao, Guobin and Chung, Yongchul},
    journal={Journal of Chemical Theory and Computation},
    year={2024},
    DOI={10.1021/acs.jctc.4c00434}
}

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-1.1.0.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-1.1.0-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-1.1.0.tar.gz.

File metadata

  • Download URL: PACMAN-charge-1.1.0.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-1.1.0.tar.gz
Algorithm Hash digest
SHA256 3078ef13bc47f61dac57034c7d5463885445c547a9d37c38d402fb98a7549c19
MD5 491c83a1dbcce29da7767eb2797ed3c0
BLAKE2b-256 90f56e02389ca827016678fd77f2fa059fcad4ba57f561906632dbc2651b49c0

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7a399856dfd44ee356aa8751311b1ad3713c63fb94c0048347da74c0ea08b74d
MD5 0b8edac989aadd6bd5df695b3ff3f8d4
BLAKE2b-256 f0b57287c43e045190863e8743a07e126e9323194ada21b29ccb12e871f77ed1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page