Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
pmcharge.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=6,atom_type=False,neutral=False)
pmcharge.Energy(cif_file="./test/Cu-BTC.cif")
  • cif_file: cif file (without partial atomic charges) [cif path]
  • charge-type (default: DDE6): DDEC6, Bader, CM5 or REPEAT
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.

Website & Zenodo

PACMAN-APPlink
github repositorylink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{doi:10.1021/acs.jctc.4c00434,
            author = {Zhao, Guobin and Chung, Yongchul G.},
            title = {PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials Based on Crystal Graph Convolution Networks},
            journal = {Journal of Chemical Theory and Computation},
            volume = {20},
            number = {12},
            pages = {5368-5380},
            year = {2024},
            doi = {10.1021/acs.jctc.4c00434},
                note ={PMID: 38822793},
            URL = { 
                    https://doi.org/10.1021/acs.jctc.4c00434
            },
            eprint = { 
                    https://doi.org/10.1021/acs.jctc.4c00434
                    }
}

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-1.1.2.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-1.1.2-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-1.1.2.tar.gz.

File metadata

  • Download URL: PACMAN-charge-1.1.2.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-1.1.2.tar.gz
Algorithm Hash digest
SHA256 03cf4eb867a467d1b6ba835cfe6d4758c6ebf9248a8b31d37b64ddd39d985ca8
MD5 4fce7e1be088704214cf7b6060e63852
BLAKE2b-256 5a1dcbb4e388a9750ed69244063ece7c24fcc8ec8492e0e4d0a77c385f4a0d06

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-1.1.2-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-1.1.2-py3-none-any.whl
  • Upload date:
  • Size: 12.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-1.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 266c5896c54aefcc10eee390dbde9835200eff9394d6f9f997bee6ca8ee3c10d
MD5 dd9cf3a2f77bb918a4c0469f6a46b85e
BLAKE2b-256 fe2536649c3a033b83f4f82f52215af12e3e4c52fdbb60790b3cdb24f380ac1f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page