Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
pmcharge.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=6,atom_type=True,neutral=True,keep_connect=True)
pmcharge.Energy(cif_file="./test/Cu-BTC.cif")
  • cif_file: cif file (without partial atomic charges) [cif path]
  • charge-type (default: DDE6): DDEC6, Bader, CM5 or REPEAT
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.
  • keep_connect (default: True): retain the atomic and connection information (such as _atom_site_adp_type, bond) for the structure.

Website & Zenodo

PACMAN-APPlink
github repositorylink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{       doi : 10.1021/acs.jctc.4c00434 ,
                author = {Zhao, Guobin and Chung, Yongchul G.},
                title = {PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials Based on Crystal Graph Convolution Networks},
                journal = {Journal of Chemical Theory and Computation},
                volume = {20},
                number = {12},
                pages = {5368-5380},
                year = {2024},
                doi = {10.1021/acs.jctc.4c00434},
                note ={PMID: 38822793},
                URL = {https://doi.org/10.1021/acs.jctc.4c00434},
                eprint = {https://doi.org/10.1021/acs.jctc.4c00434}
        }

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-1.3.1.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-1.3.1-py3-none-any.whl (13.4 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-1.3.1.tar.gz.

File metadata

  • Download URL: PACMAN-charge-1.3.1.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-1.3.1.tar.gz
Algorithm Hash digest
SHA256 8bf6c7b5c1d84f02b0bbad37de295ae2cf033737b210b1199c3b68731de2d093
MD5 6887796fe190333ebe060e84a697a65b
BLAKE2b-256 42e539ea7da37d7ec6121dab14a8ea942bc2050ad9f01163c27c346beb51e851

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 82dbdea7121b5e7b79d55e1baaab7b3dfbef8088447a49a23f08b6cfbe66aeb3
MD5 3b62acfb9d31d95781ddafe7dfc727c9
BLAKE2b-256 0b8765f12ecb753fa1706427a1f016dbefaa6d18b6ca331326d9b9c5c542ff19

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page