Skip to main content

This package has functions for the conversion of amino acid sequences to physicochemical vectors and the subsequent analysis of those vector sequences.

Project description

PCDTW is a package that implements the conversion of amino acid sequences to physicochemical vectors and subsequently allows for alignment of the sequences based on those vectors, development of consensus vectors that can be used to search databases for similar physicochemical profiles, development of the DTW distance between two physicochemical vectors and a few other functions. The basis for this package can be found in three publications and should be consulted for further background [1–3].

To install PCDTW (Two Options): -Use ‘pip install PCDTW’ in a powershell prompt -Use ‘! pip install PCDTW’ in a jupyter notebook

To use PCDTW: Use ‘import PCDTW’

Citations 1)Dixson, J.D.; Vumma, L.; Azad, R.K. An Analysis of Combined Molecular Weight and Hydrophobicity Similarity between the Amino Acid Sequences of Spike Protein Receptor Binding Domains of Betacoronaviruses and Functionally Similar Sequences from Other Virus Families. Microorganisms 2024, 12.

2)Dixson, J.D.; Azad, R.K. Physicochemical Evaluation of Remote Homology in the Twilight Zone. Proteins Struct. Funct. Bioinforma. 2024, n/a, doi:https://doi.org/10.1002/prot.26742.

3)Dixson, J.D.; Azad, R.K. A Novel Predictor of ACE2-Binding Ability among Betacoronaviruses. Evol. Med. Public Heal. 2021, 9, 360–373, doi:10.1093/EMPH/EOAB032.

Usage:

  1. To convert an amino acid sequence to vector form using two physicochemical properties:

    PCDTW.PCDTWConvert(x, PCProp1='Mass', PCProp2='HydroPho', normalize=False)
    

    PCProp1/PCProp2 options:

    • 'HydroPho'
    • 'HydroPhIl'
    • 'Hbond'
    • 'SideVol'
    • 'Polarity'
    • 'Polarizability'
    • 'SASA'
    • 'NCI'
    • 'Mass'

    Normalization: If normalize is set to True then the individual physicochemical scalar values for each amino acid are absolute maximum normalized before converting the amino acid sequence to vector form.

  2. To align two amino acid sequences using DTW and two physicochemical properties:

    PCDTW.PCDTWAlign(inputseq1str, inputseq2str, PCProp1='Mass', PCProp2='HydroPho', Penalty=0, Window=3)
    
    • window = size of Sakoe-Chiba band
    • penalty = somewhat equivalent to mismatch penalty in standard dynamic programming based alignment

    Returns a dictionary containing the following values:

    • 'Seq1AlignedString'
    • 'Seq2AlignedString'
    • 'FullAlignment'
    • 'Identity'
    • 'ConsensusVector'

    Example to get the full alignment and identity:

    seq1 = "MSDSNQGNNQQNYQQYSQNGNQQQGNNRYQG"
    seq2 = "MMNNNGNQVSNLSNALRQVNIGNRNSNTTT"
    print(PCDTWAlign(seq1, seq2)['FullAlignment'])
    print(PCDTWAlign(seq1, seq2)['Identity'])
    
  3. To get the PCDTW distance between two sequences normalized to the number of amino acids in the alignment:

    Dist=PCDTW.PCDTWDist(Seq1, Seq2)
    print(Dist)
    

    Example to get the distance:

    seq1 = "MSDSNQGNNQQNYQQYSQNGNQQQGNNRYQG"
    seq2 = "MMNNNGNQVSNLSNALRQVNIGNRNSNTTT"
    print(PCDTWDist(seq1, seq2))
    
  4. To get a variable number of synthetically evolved homologs for an input sequence:

    SynHomologs=PCDTW.PCEvolve(Seq='GALM', PCProp1='Mass', PCProp2='HydroPho', BaseName='ProtX')
    print(SynHomologs)
    

    PCProp1/PCProp2 options:

    • 'HydroPho'
    • 'HydroPhIl'
    • 'Hbond'
    • 'SideVol'
    • 'Polarity'
    • 'Polarizability'
    • 'SASA'
    • 'NCI'
    • 'Mass'

Dependency Citations:

dtaidistance: Wannes Meert, Kilian Hendrickx, Toon Van Craenendonck, Pieter Robberechts, Hendrik Blockeel, & Jesse Davis. (2022). DTAIDistance (Version v2). Zenodo. http://doi.org/10.5281/zenodo.5901139

numpy: Harris, C.R., Millman, K.J., van der Walt, S.J. et al. (2020). Array programming with NumPy. Nature 585, 357–362. DOI: 10.1038/s41586-020-2649-2.

pandas: McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference (SciPy 2010).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pcdtw-0.2.6.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

pcdtw-0.2.6-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file pcdtw-0.2.6.tar.gz.

File metadata

  • Download URL: pcdtw-0.2.6.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.7

File hashes

Hashes for pcdtw-0.2.6.tar.gz
Algorithm Hash digest
SHA256 49c96d1aa5882118e85c5741c8db64109c76ee5ac2e7b8b15068573106ae3d6a
MD5 caab7098872873659ef96a19b63732a9
BLAKE2b-256 cbe104aa3e64372fc8f6d28a94aaffc13e1c77cd537ad3f9d3aae151ade2c42c

See more details on using hashes here.

File details

Details for the file pcdtw-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: pcdtw-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.7

File hashes

Hashes for pcdtw-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 fb653afc31466907ebe5ad74c79b1d95854a0b5d6bcbdaee1e946b4b04feba7e
MD5 06b028a512e13abb7e41f6b9e111066b
BLAKE2b-256 e03e9869646e509807018a6ae9d8c62543a7b5ba68a7f3b9361b1e6b9c59472c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page