Skip to main content

Scoring tools for bracket tree banks.

Project description

PYEVALB

EVEVALB is a python version of Evalb which is used to score the bracket tree banks.

Installation

pip install PYEVALB

Examples

Score two corpus

from PYEVALB import scorer

gold_path = 'gold_corpus.txt'
test_path = 'test_corpus.txt'
result_path = 'result.txt'

scorer.evalb(gold_path, test_path, result_path)

And the result would be:

 ID | length | state | recall | prec | matched_brackets | gold_brackets | test_brackets | cross_brackets | words | correct_tags | tag_accracy
---:|-------:|------:|-------:|-----:|-----------------:|--------------:|--------------:|---------------:|------:|-------------:|------------:
   0|      44|      0|    0.57|  0.61|                31|             54|             51|              16|     44|            43|         0.98
   1|      13|      0|    0.64|  0.60|                 9|             14|             15|               3|     13|            12|         0.92
   2|      29|      0|    0.97|  0.97|                29|             30|             30|               0|     29|            29|         1.00
   3|      20|      0|    0.80|  0.80|                20|             25|             25|               4|     20|            20|         1.00
   4|      19|      0|    0.91|  1.00|                21|             23|             21|               0|     19|            19|         1.00
   5|      71|      0|    0.67|  0.68|                52|             78|             77|              15|     71|            65|         0.92
   6|      16|      0|    0.61|  0.69|                11|             18|             16|               0|     16|            14|         0.88
   7|      27|      0|    0.92|  0.96|                24|             26|             25|               0|     27|            26|         0.96
   8|      19|      0|    1.00|  1.00|                20|             20|             20|               0|     19|            19|         1.00
   9|      41|      0|    0.80|  0.78|                32|             40|             41|               5|     41|            39|         0.95

=================================================================================================================================================
Number of sentence: 10.00
Number of Error sentence:   0.00
Number of Skip  sentence:   0.00
Number of Valid sentence:   10.00
Bracketing Recall:  75.91
Bracketing Precision:       77.57
Bracketing FMeasure:        76.73
Complete match:     10.00
Average crossing:   4.30
No crossing:        50.00
Tagging accuracy:   95.65

Score two trees

from PYEVALB import scorer
from PYEVALB import parser

gold = '(IP (NP (PN 这里)) (VP (ADVP (AD 便)) (VP (VV 产生) (IP (NP (QP (CD 一) (CLP (M 个))) (DNP (NP (JJ 结构性)) (DEG 的)) (NP (NN 盲点))) (PU :) (IP (VP (VV 臭味相投) (PU ,) (VV 物以类聚)))))) (PU 。))'

test = '(IP (IP (NP (PN 这里)) (VP (ADVP (AD 便)) (VP (VV 产生) (NP (QP (CD 一) (CLP (M 个))) (DNP (ADJP (JJ 结构性)) (DEG 的)) (NP (NN 盲点)))))) (PU :) (IP (NP (NN 臭味相投)) (PU ,) (VP (VV 物以类聚))) (PU 。))'

gold_tree = parser.create_from_bracket_string(gold)
test_tree = parser.create_from_bracket_string(test)

result = scorer.score_trees(gold_tree, test_tree)

print('Recall =' + str(result.recall))
print('Precision =' + str(result.prec))

And the result is:

Recall = 64.29
Precision =  56.25

TODO

  1. Remove the dependency of pytablewriter

  2. Add more configurations, such as limiting the length of sentence.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PYEVALB-0.1.3.tar.gz (23.0 kB view hashes)

Uploaded source

Built Distribution

PYEVALB-0.1.3-py3-none-any.whl (13.1 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page