Skip to main content

Package description

Project description

ParTree - Data Partitioning through Tree-based Clustering Method

While existing clustering methods only provide the assignment of records to clusters without justifying the partitioning, we propose tree-based clustering methods that offer interpretable data partitioning through a shallow decision tree. These decision trees enable easy-to-understand explanations of cluster assignments through short and understandable split conditions. The proposed methods are evaluated through experiments on synthetic and real datasets and proved to be more effective than traditional clustering approaches and interpretable ones in terms of standard evaluation measures and runtime.

Setup

Using PyPI

pip install partree

Manual Setup

git clone https://github.com/cri98li/ParTree
cd ParTree
pip install -e .

Running the code

import pandas as pd
from ParTree import PrincipalParTree
from ParTree import print_rules

# load the data
df = pd.read_csv(dataset) 
X = df.values

#train the model
partree = PrincipalParTree()
partree.fit(X)

#extract the labels
labels = partree.labels_ 

#get the row explanation in a dictionary-like structure and print it
rules = partree.get_rules()
print(print_rules(rules, None, feature_names=df.columns))

You can find the software documentation in the /docs/ folder and a powerpoint presentation on Geolet can be found here. You can cite this work with

TODO

Additional Material

Clustering logic visualizations for diabetes dataset. From left to right: ParTree, k-Means, Hier:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ParTree-0.0.4.tar.gz (21.3 kB view details)

Uploaded Source

File details

Details for the file ParTree-0.0.4.tar.gz.

File metadata

  • Download URL: ParTree-0.0.4.tar.gz
  • Upload date:
  • Size: 21.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.6

File hashes

Hashes for ParTree-0.0.4.tar.gz
Algorithm Hash digest
SHA256 0afc555ec52fb8c3db1c990f10c3d63923b66ea79ac35411c768de5da671f4ad
MD5 9ac760cb08fa8c1d6597b97c0909d0cd
BLAKE2b-256 bdb40cef11c5a5d96cf3b562eb6906c5635b2c40b7855558bbd5298f238aa1b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page