Skip to main content

Python Wrapper for ParallelDots APIs

Project description

A wrapper for the ParallelDots API.

Installation

>From PyPI:

pip install paralleldots

>From Source:

https://github.com/ParallelDots/ParallelDots-Python-API.git
python setup.py install

API Keys & Setup

Signup and get your free API key from ParallelDots. You will receive a mail containing the API key at the registered email id.

Configuration:

>>> from paralleldots import set_api_key, get_api_key

# Setting your API key
>>> set_api_key("YOUR API KEY")

# Viewing your API key
>>> get_api_key()

Supported APIs:

Examples

>>> from paralleldots import similarity, ner, taxonomy, sentiment, keywords, intent, emotion, multilang, abuse, sentiment_social

>>> similarity( "Sachin is the greatest batsman", "Tendulkar is the finest cricketer" )
{"actual_score": 0.842932,"normalized_score": 4.931469}

>>> sentiment( "Come on, lets play together" )
{"probabilities": {"positive": 0.00002,"neutral": 0.999954,"negative": 0.000026}}

>>> taxonomy( "Narendra Modi is the prime minister of India" )
{"tag": "terrorism", "confidence_score": 0.531435}, {"tag": "world politics", "confidence_score": 0.391963}, {"tag": "politics", "confidence_score": 0.358955}, {"tag": "religion", "confidence_score": 0.308195}, {"tag": "defense", "confidence_score": 0.26187}, {"tag": "business", "confidence_score": 0.20885}, {"tag": "entrepreneurship", "confidence_score": 0.18349}, {"tag": "health", "confidence_score": 0.171121}, {"tag": "technology", "confidence_score": 0.168591}, {"tag": "law", "confidence_score": 0.156953}, {"tag": "education", "confidence_score": 0.146511}, {"tag": "science", "confidence_score": 0.101002}, {"tag": "crime", "confidence_score": 0.085016}, {"tag": "entertainment", "confidence_score": 0.080634}, {"tag": "environment", "confidence_score": 0.078024}, {"tag": "disaster", "confidence_score": 0.075295}, {"tag": "weather", "confidence_score": 0.06784}, {"tag": "accident", "confidence_score": 0.066831}, {"tag": "sports", "confidence_score": 0.058329}, {"tag": "advertising", "confidence_score": 0.054868}, {"tag": "history", "confidence_score": 0.043581}, {"tag": "mining", "confidence_score": 0.03833}, {"tag": "travel", "confidence_score": 0.025517}, {"tag": "geography", "confidence_score": 0.022372}, {"tag": "nature", "confidence_score": 0.013477}, {"tag": "lifestyle", "confidence_score": 0.006467}, {"tag": "automobile", "confidence_score": 0.001161}, {"tag": "personal care", "confidence_score": 0.000275}]}

>>> ner( "Narendra Modi is the prime minister of India" )
{"entities": [
    {
        "category": "name",
        "name": "Narendra Modi",
        "confidence_score": 0.951439
    },
    {
        "category": "place",
        "name": "India",
        "confidence_score": 0.9263
    }
]}

>>> keywords( "Prime Minister Narendra Modi tweeted a link to the speech Human Resource Development Minister Smriti Irani made in the Lok Sabha during the debate on the ongoing JNU row and the suicide of Dalit scholar Rohith Vemula at the Hyderabad Central University." )
[{"relevance_score": 4, "keyword": "Prime Minister Narendra Modi"}, {"relevance_score": 1, "keyword": "link"}, {"relevance_score": 3, "keyword": "speech Human Resource"}, {"relevance_score": 1, "keyword": "Smriti"}, {"relevance_score": 1, "keyword": "Lok"}]

>>> emotion("Did you hear the latest Porcupine Tree song ? It's rocking !")
{"emotion": "other", "probabilities": {"angry": 0.010629, "other": 0.453988, "sad": 0.028748, "excited": 0.2596, "happy": 0.247035}
>>> intent("Finance ministry calls banks to discuss new facility to drain cash")
{"probabilities": {"news": 0.946028, "other": 0.015853, "query": 0.000412, "feedback/opinion": 0.014115, "spam": 0.023591}}

>>> multilang("Me encanta jugar al baloncesto", "es")
{"sentiment": "positive", "confidence_score": 1.0}

>>> abuse("you f**king a$$hole")
{"sentence_type": "Abusive", "confidence_score": 0.953125}

>>> sentiment_social("I left my camera at home")
{"probabilities": {"positive": 0.040374, "neutral": 0.491032, "negative": 0.468594}}

>>> usage()
{
"emotion": 100,
"sentiment": 100,
"similarity": 100,
"taxonomy": 100,
"abuse": 100,
"intent": 100,
"keywords": 100,
"ner": 100,
"multilang": 100,
"sentiment_social": 100
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ParallelDots-1.0.15.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

ParallelDots-1.0.15-py2.py3-none-any.whl (13.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ParallelDots-1.0.15.tar.gz.

File metadata

File hashes

Hashes for ParallelDots-1.0.15.tar.gz
Algorithm Hash digest
SHA256 613facb89892b2593ccf81bb5233f9b2ef7813480489a022dd556e7914ad389b
MD5 1083fc1da92f631778aee90f28abc140
BLAKE2b-256 6e14ae49fb46bbdaf03609d267d1c1408459edf219a7b1cf760c524f44e97ed6

See more details on using hashes here.

File details

Details for the file ParallelDots-1.0.15-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ParallelDots-1.0.15-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 185720b335836721fc989e4b8d0d4423f8e1c57a2ec0c46d6fffd3b8632a7e6a
MD5 bf3fb40c61c59dee44e2d07d72c75586
BLAKE2b-256 e6f40056aaf156ae9231671dea1b0fab5b49494adebfcaa87c34d0476735055c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page