Skip to main content

Python Wrapper for ParallelDots APIs

Project description

A wrapper for the ParallelDots API.

Installation

>From PyPI:

pip install paralleldots

>From Source:

https://github.com/ParallelDots/ParallelDots-Python-API.git
python setup.py install

API Keys & Setup

Signup and get your free API key from ParallelDots. You will receive a mail containing the API key at the registered email id.

Configuration:

>>> from paralleldots import set_api_key, get_api_key

# Setting your API key
>>> set_api_key("YOUR API KEY")

# Viewing your API key
>>> get_api_key()

Supported APIs:

Examples

>>> from paralleldots import similarity, ner, taxonomy, sentiment, keywords, intent, emotion, multilang, abuse, sentiment_social

>>> similarity( "Sachin is the greatest batsman", "Tendulkar is the finest cricketer" )
{"actual_score": 0.842932,"normalized_score": 4.931469}

>>> sentiment( "Come on, lets play together" )
{"probabilities": {"positive": 0.00002,"neutral": 0.999954,"negative": 0.000026}}

>>> taxonomy( "Narendra Modi is the prime minister of India" )
{"tag": "terrorism", "confidence_score": 0.531435}, {"tag": "world politics", "confidence_score": 0.391963}, {"tag": "politics", "confidence_score": 0.358955}, {"tag": "religion", "confidence_score": 0.308195}, {"tag": "defense", "confidence_score": 0.26187}, {"tag": "business", "confidence_score": 0.20885}, {"tag": "entrepreneurship", "confidence_score": 0.18349}, {"tag": "health", "confidence_score": 0.171121}, {"tag": "technology", "confidence_score": 0.168591}, {"tag": "law", "confidence_score": 0.156953}, {"tag": "education", "confidence_score": 0.146511}, {"tag": "science", "confidence_score": 0.101002}, {"tag": "crime", "confidence_score": 0.085016}, {"tag": "entertainment", "confidence_score": 0.080634}, {"tag": "environment", "confidence_score": 0.078024}, {"tag": "disaster", "confidence_score": 0.075295}, {"tag": "weather", "confidence_score": 0.06784}, {"tag": "accident", "confidence_score": 0.066831}, {"tag": "sports", "confidence_score": 0.058329}, {"tag": "advertising", "confidence_score": 0.054868}, {"tag": "history", "confidence_score": 0.043581}, {"tag": "mining", "confidence_score": 0.03833}, {"tag": "travel", "confidence_score": 0.025517}, {"tag": "geography", "confidence_score": 0.022372}, {"tag": "nature", "confidence_score": 0.013477}, {"tag": "lifestyle", "confidence_score": 0.006467}, {"tag": "automobile", "confidence_score": 0.001161}, {"tag": "personal care", "confidence_score": 0.000275}]}

>>> ner( "Narendra Modi is the prime minister of India" )
{"entities": [
    {
        "category": "name",
        "name": "Narendra Modi",
        "confidence_score": 0.951439
    },
    {
        "category": "place",
        "name": "India",
        "confidence_score": 0.9263
    }
]}

>>> keywords( "Prime Minister Narendra Modi tweeted a link to the speech Human Resource Development Minister Smriti Irani made in the Lok Sabha during the debate on the ongoing JNU row and the suicide of Dalit scholar Rohith Vemula at the Hyderabad Central University." )
[{"relevance_score": 4, "keyword": "Prime Minister Narendra Modi"}, {"relevance_score": 1, "keyword": "link"}, {"relevance_score": 3, "keyword": "speech Human Resource"}, {"relevance_score": 1, "keyword": "Smriti"}, {"relevance_score": 1, "keyword": "Lok"}]

>>> emotion("Did you hear the latest Porcupine Tree song ? It's rocking !")
{"emotion": "other", "probabilities": {"angry": 0.010629, "other": 0.453988, "sad": 0.028748, "excited": 0.2596, "happy": 0.247035}
>>> intent("Finance ministry calls banks to discuss new facility to drain cash")
{"probabilities": {"news": 0.946028, "other": 0.015853, "query": 0.000412, "feedback/opinion": 0.014115, "spam": 0.023591}}

>>> multilang("Me encanta jugar al baloncesto", "es")   # The text is encoded in the function
{"sentiment": "positive", "confidence_score": 1.0}

>>> abuse("you f**king a$$hole")
{"sentence_type": "Abusive", "confidence_score": 0.953125}

>>> sentiment_social("I left my camera at home")
{"probabilities": {"positive": 0.040374, "neutral": 0.491032, "negative": 0.468594}}

>>> usage()
{
"emotion": 100,
"sentiment": 100,
"similarity": 100,
"taxonomy": 100,
"abuse": 100,
"intent": 100,
"keywords": 100,
"ner": 100,
"multilang": 100,
"sentiment_social": 100
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ParallelDots-1.0.16.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

ParallelDots-1.0.16-py2.py3-none-any.whl (13.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ParallelDots-1.0.16.tar.gz.

File metadata

File hashes

Hashes for ParallelDots-1.0.16.tar.gz
Algorithm Hash digest
SHA256 0a276103b42ceac81ba6e7b140a9d954868697622e9b2441df24af0314fea609
MD5 fbcbc911594bc16f73c48211e9020998
BLAKE2b-256 73d70c3fad21d501a68d1846f85c1bfb41f33de580f69079f0e95a8a8c717918

See more details on using hashes here.

File details

Details for the file ParallelDots-1.0.16-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ParallelDots-1.0.16-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3483a5fb8ba6bd2441d7fb3e1abced203d910534b81544d1200aa5fe3c685a2f
MD5 9af92c39b2270dbc08a3624856494300
BLAKE2b-256 4e32e6d7a874f8ba809077e5582d26f98b3ebed8fcfa5ca3b2f92bbcd27fe0e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page