Skip to main content

Python Wrapper for ParallelDots APIs

Project description

A wrapper for the ParallelDots API.

Installation

>From PyPI:

pip install paralleldots

>From Source:

https://github.com/ParallelDots/ParallelDots-Python-API.git
python setup.py install

API Keys & Setup

Signup and get your free API key from ParallelDots. You will receive a mail containing the API key at the registered email id.

Configuration:

>>> from paralleldots import set_api_key, get_api_key

# Setting your API key
>>> set_api_key("YOUR API KEY")

# Viewing your API key
>>> get_api_key()

Supported APIs:

Examples

>>> from paralleldots import similarity, ner, taxonomy, sentiment, keywords, intent, emotion, multilang, abuse, sentiment_social

>>> similarity( "Sachin is the greatest batsman", "Tendulkar is the finest cricketer" )
{"actual_score": 0.842932,"normalized_score": 4.931469}

>>> sentiment( "Come on, lets play together" )
{"probabilities": {"positive": 0.00002,"neutral": 0.999954,"negative": 0.000026}, u'sentiment': u'positive'}

>>> taxonomy( "Narendra Modi is the prime minister of India" )
{"tag": "terrorism", "confidence_score": 0.531435}, {"tag": "world politics", "confidence_score": 0.391963}, {"tag": "politics", "confidence_score": 0.358955}, {"tag": "religion", "confidence_score": 0.308195}, {"tag": "defense", "confidence_score": 0.26187}, {"tag": "business", "confidence_score": 0.20885}, {"tag": "entrepreneurship", "confidence_score": 0.18349}, {"tag": "health", "confidence_score": 0.171121}, {"tag": "technology", "confidence_score": 0.168591}, {"tag": "law", "confidence_score": 0.156953}, {"tag": "education", "confidence_score": 0.146511}, {"tag": "science", "confidence_score": 0.101002}, {"tag": "crime", "confidence_score": 0.085016}, {"tag": "entertainment", "confidence_score": 0.080634}, {"tag": "environment", "confidence_score": 0.078024}, {"tag": "disaster", "confidence_score": 0.075295}, {"tag": "weather", "confidence_score": 0.06784}, {"tag": "accident", "confidence_score": 0.066831}, {"tag": "sports", "confidence_score": 0.058329}, {"tag": "advertising", "confidence_score": 0.054868}, {"tag": "history", "confidence_score": 0.043581}, {"tag": "mining", "confidence_score": 0.03833}, {"tag": "travel", "confidence_score": 0.025517}, {"tag": "geography", "confidence_score": 0.022372}, {"tag": "nature", "confidence_score": 0.013477}, {"tag": "lifestyle", "confidence_score": 0.006467}, {"tag": "automobile", "confidence_score": 0.001161}, {"tag": "personal care", "confidence_score": 0.000275}]}

>>> ner( "Narendra Modi is the prime minister of India" )
{"entities": [
    {
        "category": "name",
        "name": "Narendra Modi",
        "confidence_score": 0.951439
    },
    {
        "category": "place",
        "name": "India",
        "confidence_score": 0.9263
    }
]}

>>> keywords( "Prime Minister Narendra Modi tweeted a link to the speech Human Resource Development Minister Smriti Irani made in the Lok Sabha during the debate on the ongoing JNU row and the suicide of Dalit scholar Rohith Vemula at the Hyderabad Central University." )
[{"relevance_score": 4, "keyword": "Prime Minister Narendra Modi"}, {"relevance_score": 1, "keyword": "link"}, {"relevance_score": 3, "keyword": "speech Human Resource"}, {"relevance_score": 1, "keyword": "Smriti"}, {"relevance_score": 1, "keyword": "Lok"}]

>>> emotion("Did you hear the latest Porcupine Tree song ? It's rocking !")
{"emotion": "other", "probabilities": {"angry": 0.010629, "other": 0.453988, "sad": 0.028748, "excited": 0.2596, "happy": 0.247035}
>>> intent("Finance ministry calls banks to discuss new facility to drain cash")
{"probabilities": {"news": 0.946028, "other": 0.015853, "query": 0.000412, "feedback/opinion": 0.014115, "spam": 0.023591}}

>>> multilang("Me encanta jugar al baloncesto", "es")   # The text is encoded in the function
{"sentiment": "positive", "confidence_score": 1.0}

>>> abuse("you f**king a$$hole")
{"sentence_type": "Abusive", "confidence_score": 0.953125}

>>> sentiment_social("I left my camera at home")
{"probabilities": {"positive": 0.040374, "neutral": 0.491032, "negative": 0.468594}}

>>> usage()
{
"emotion": 100,
"sentiment": 100,
"similarity": 100,
"taxonomy": 100,
"abuse": 100,
"intent": 100,
"keywords": 100,
"ner": 100,
"multilang": 100,
"sentiment_social": 100
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ParallelDots-1.0.17.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

ParallelDots-1.0.17-py2.py3-none-any.whl (13.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ParallelDots-1.0.17.tar.gz.

File metadata

File hashes

Hashes for ParallelDots-1.0.17.tar.gz
Algorithm Hash digest
SHA256 8a02f1e8461203417c20ce969b17113701287c3e006a38f768c90b4e9d32a0b6
MD5 ff6c64de76ffbcfeb665305849312c3f
BLAKE2b-256 afa10ad38add4f7cb559cb21addcb171b0af09182b6f287faeabe27fbe6b5a4f

See more details on using hashes here.

File details

Details for the file ParallelDots-1.0.17-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ParallelDots-1.0.17-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 34bf1500d00965f343eaaf460175e8f6d853bf71abe1c9ce9a2e7e0bcedfc89e
MD5 81a2e2a8e3119e0f86e26862a7d774a8
BLAKE2b-256 bf4bb3cab302cd70f06a4a2ddc0140eb07916f1bec1eef25a90d3bdd650c72ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page