Skip to main content

Python Wrapper for ParallelDots APIs

Project description

A wrapper for the ParallelDots API.

Installation

From PyPI:

pip install paralleldots

From Source:

https://github.com/ParallelDots/ParallelDots-Python-API.git
python setup.py install

API Keys & Setup

Signup and get your free API key from ParallelDots. You will receive a mail containing the API key at the registered email id.

Configuration:

>>> from paralleldots import set_api_key, get_api_key

# Setting your API key
>>> set_api_key( "YOUR API KEY" )

# Viewing your API key
>>> get_api_key()

Languages Supported:

  • Portuguese ( pt )

  • Simplified Chinese ( Not available in multilingual keyword generator API ) ( zh )

  • Spanish ( es )

  • German ( de )

  • French ( fr )

  • Dutch ( nl )

  • Italian ( it )

  • Japanese ( ja )

  • Thai ( th )

  • Danish ( da )

  • Finnish ( fi )

  • Greek ( el )

  • Russian ( ru )

  • Arabic ( ar )

Supported APIs:

  • Abuse

  • Custom Classifier

  • Emotion

  • Facial Emotion

  • Intent

  • Keywords

  • Multilanguage Keywords ( Supports Multiple Languages )

  • Named Entity Extraction/Recognition ( NER )

  • Not Safe For Work ( NSFW Image Classifier )

  • Phrase Extractor

  • Popularity ( Image Classifier )

  • Object Recognizer

  • Sentiment Analysis

  • Target Sentiment Analysis

  • Semantic Similarity

  • Taxonomy

  • Text Parser

  • Usage

Examples

>>> import paralleldots
>>> api_key   = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
>>> text      = "Chipotle in the north of Chicago is a nice outlet. I went to this place for their famous burritos but fell in love with their healthy avocado salads. Our server Jessica was very helpful. Will pop in again soon!"
>>> path      = "/home/my_computer/Downloads/image_1.jpg"
>>> aspect    = "food"
>>> lang_code = "fr"
>>> lang_text = "C'est un environnement très hostile, si vous choisissez de débattre ici, vous serez vicieusement attaqué par l'opposition."
>>> category  = [ "travel","food","shopping", "market" ]
>>> url       = "http://i.imgur.com/klb812s.jpg"
>>> data      =  [ "drugs are fun", "don\'t do drugs, stay in school", "lol you a fag son", "I have a throat infection" ]
>>> paralleldots.set_api_key( api_key )
>>> print( "API Key: %s" % paralleldots.get_api_key() )
>>> print( "\nAbuse" )
>>> print( paralleldots.abuse( text ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "sentence_type":"Non Abusive", "confidence_score":0.876953}
>>> print( "\nBatch Abuse" )
>>> print( paralleldots.batch_abuse( data ) )
{'batch': [{'confidence_score': 0.904297, 'code': 200, 'sentence_type': 'Non Abusive'}, {'confidence_score': 0.953125, 'code': 200, 'sentence_type': 'Non Abusive'}, {'confidence_score': 0.884766, 'code': 200, 'sentence_type': 'Abusive'}, {'confidence_score': 0.859375, 'code': 200, 'sentence_type': 'Non Abusive'}]}
>>> print( "\nCustom Classifier" )
>>> print( paralleldots.custom_classifier( text, category ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", {"taxonomy":[{"category":"food","confidence_score":0.9879363775},{"category":"market","confidence_score":0.4590245783},{"category":"travel","confidence_score":0.3219315708},{"category":"shopping","confidence_score":0.0089879232}]}}
>>> print( "\nEmotion" )
>>> print( paralleldots.emotion( text ) )
{"emotion":{"emotion":"Happy", "probabilities":{"Sarcasm":0.0, "Angry":0.04090321436524391, "Sad":0.0, "Fear":0.0, "Bored":0.0, "Excited":0.07638891041278839, "Happy":0.1223890483379364}}, "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions"}
>>> print( "\nBatch Emotion" )
>>> print( paralleldots.batch_emotion( data ) )
{'batch': [{'emotion': {'probabilities': {'Sarcasm': 0.14361357966835644, 'Angry': 0.08368749025924326, 'Sad': 0.025132654797074747, 'Fear': 0.344180628127824, 'Bored': 0.06818537695928778, 'Excited': 0.2082173830066366, 'Happy': 0.1269828871815771}, 'emotion': 'Fear'}, 'code': 200}, {'emotion': {'probabilities': {'Sarcasm': 0.09578231410218406, 'Angry': 0.28458333402617014, 'Sad': 0.05735552847026735, 'Fear': 0.13348989058422842, 'Bored': 0.21483391837268373, 'Excited': 0.10118401124107868, 'Happy': 0.11277100320338784}, 'emotion': 'Angry'}, 'code': 200}, {'emotion': {'probabilities': {'Sarcasm': 0.11124312097614852, 'Angry': 0.1216389498218648, 'Sad': 0.05410169293913279, 'Fear': 0.18020579627989994, 'Bored': 0.2922536573298578, 'Excited': 0.16457090063285224, 'Happy': 0.07598588202024392}, 'emotion': 'Bored'}, 'code': 200}, {'emotion': {'probabilities': {'Sarcasm': 0.05327575096045899, 'Angry': 0.46982189055546925, 'Sad': 0.3672790882763135, 'Fear': 0.09443579921654321, 'Bored': 0.005730775686542725, 'Excited': 0.004337021311595699, 'Happy': 0.005119673993076841}, 'emotion': 'Angry'}, 'code': 200}]}
>>> print( "\nEmotion - Lang: Fr". )
>>> print( paralleldots.emotion( lang_text, lang_code ) )
{"emotion":{"emotion":"Angry", "probabilities":{"Sarcasm":0.052613839507102966, "Angry":0.07304570078849792, "Sad":0.051657479256391525, "Fear":0.07096020132303238, "Bored":0.0, "Excited":0.0, "Happy":0.0}}, "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions"}
>>> print( "\nFacial Emotion" )
>>> print( paralleldots.facial_emotion( path ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "output":"No face detected."}
>>> print( "\nFacial Emotion: URL Method" )
>>> print( paralleldots.facial_emotion_url( url ) )
{"facial_emotion":[{"score":0.439317524433136, "tag":"Angry"}, {"score":0.18545667827129364, "tag":"Surprise"}, {"score":0.11217296868562698, "tag":"Sad"}, {"score":0.08146321028470993, "tag":"Neutral"}, {"score":0.06052987277507782, "tag":"Happy"}, {"score":0.06052987277507782, "tag":"Fear"}, {"score":0.06052987277507782, "tag":"Disgust"}], "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: https://www.paralleldots.com/terms-and-conditions"}
>>> print( "\nIntent" )
>>> print( paralleldots.intent( text ) )
{"probabilities":{"marketing":0.042, "spam/junk":0.003, "news":0.927, "feedback/opinion":0.024, "query":0.004}, "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "intent":"news"}
>>> print( "\nBatch Intent" )
>>> print( paralleldots.batch_intent( data ) )
{'batch': [{'probabilities': {'marketing': 0.116, 'spam/junk': 0.66, 'query': 0.002, 'feedback/opinion': 0.141, 'news': 0.08}, 'code': 200, 'intent': 'spam/junk'}, {'probabilities': {'marketing': 0.106, 'spam/junk': 0.423, 'query': 0.027, 'feedback/opinion': 0.393, 'news': 0.051}, 'code': 200, 'intent': 'spam/junk'}, {'probabilities': {'marketing': 0.001, 'spam/junk': 0.664, 'query': 0.001, 'feedback/opinion': 0.333, 'news': 0.001}, 'code': 200, 'intent': 'spam/junk'}, {'probabilities': {'marketing': 0.0, 'spam/junk': 0.124, 'query': 0.404, 'feedback/opinion': 0.469, 'news': 0.004}, 'code': 200, 'intent': 'feedback/opinion'}]}
>>> print( "\nKeywords" )
>>> print( paralleldots.keywords( text ) )
{"keywords":[{"keyword":"Prime Minister Narendra Modi", "confidence_score":0.857594}, {"keyword":"link", "confidence_score":0.913924}, {"keyword":"speech Human Resource", "confidence_score":0.70655}, {"keyword":"Smriti", "confidence_score":0.860351}, {"keyword":"Lok", "confidence_score":0.945534}], "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions"}
>>> print( "\nBatch Keywords" )
>>> print( paralleldots.batch_keywords( data ) )
{'batch': [{'keywords': [{'keyword': 'fun', 'confidence_score': 0.560126}], 'code': 200}, {'keywords': [{'keyword': 'drugs', 'confidence_score': 0.89078}, {'keyword': 'school', 'confidence_score': 0.867192}], 'code': 200}, {'keywords': [{'keyword': 'son', 'confidence_score': 0.731249}], 'code': 200}, {'keywords': [{'keyword': 'throat infection', 'confidence_score': 0.87782}], 'code': 200}]}
>>> print( "\nLanguage Detection" )
>>> print( paralleldots.language_detection( lang_text ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "output":"French", "code":200, "prob":0.9999592304229736}
>>> print( "\nBatch Language Detection" )
>>> print( paralleldots.batch_language_detection( data ) )
{'batch': [{'output': 'English', 'code': 200, 'prob': 0.960185170173645}, {'output': 'English', 'code': 200, 'prob': 0.9313138127326965}, {'output': 'English', 'code': 200, 'prob': 0.5287713408470154}, {'output': 'English', 'code': 200, 'prob': 0.8692556619644165}]}
>>> print( "\nMultilang Keywords - Lang: Fr". )
>>> print( paralleldots.multilang_keywords( lang_text, lang_code ) )
{"keywords":["cest", "très", "vicieusement", "attaqué", "hostile", "environnement", "débattre", "choisissez", "lopposition", "si"], "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions"}
>>> print( "\nNER" )
>>> print( paralleldots.ner( text ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "entities":[{"category":"name", "name":"Narendra Modi", "confidence_score":0.990574}, {"category":"name", "name":"Smriti Irani", "confidence_score":0.989922}, {"category":"name", "name":"Rohith Vemula", "confidence_score":0.839291}, {"category":"group", "name":"Lok Sabha", "confidence_score":0.80819}, {"category":"group", "name":"Dalit", "confidence_score":0.655424}, {"category":"group", "name":"Central University", "confidence_score":0.708817}, {"category":"place", "name":"Hyderabad", "confidence_score":0.591985}]}
>>> print( "\nBatch NER" )
>>> print( paralleldots.batch_ner( data ) )
{'batch': [{'entities': 'The statement belongs to none of the categories.', 'code': 200}, {'entities': [{'category': 'name', 'name': 'don', 'confidence_score': 0.671695}], 'code': 200}, {'entities': 'The statement belongs to none of the categories.', 'code': 200}, {'entities': 'The statement belongs to none of the categories.', 'code': 200}]}
>>> print( "\nNSFW" )
>>> print( paralleldots.nsfw( path ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "output":"not safe to open at work", "prob":0.9995405673980713}
>>> print( "\nNSFW: URL Method" )
>>> print( paralleldots.nsfw_url( url ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: https://www.paralleldots.com/terms-and-conditions", "output":"safe to open at work", "prob":0.979527473449707}
>>> print( "\nObject Recognizer" )
>>> print( paralleldots.object_recognizer( path ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "output":[{"score":0.8445611596107483, "tag":"Muscle"}, {"score":0.6443125605583191, "tag":"Limb"}, {"score":0.5493743419647217, "tag":"Arm"}, {"score":0.5155590772628784, "tag":"Person"}, {"score":0.39905625581741333, "tag":"Human body"}, {"score":0.39764025807380676, "tag":"Leg"}, {"score":0.3255367875099182, "tag":"Hand"}, {"score":0.2798691689968109, "tag":"Male person"}, {"score":0.25423258543014526, "tag":"Adult"}, {"score":0.2470093071460724, "tag":"Man"}]}
>>> print( "\nObject Recognizer: URL Method" )
>>> print( paralleldots.object_recognizer_url( url ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: https://www.paralleldots.com/terms-and-conditions", "output":[{"score":0.8752718567848206, "tag":"Dog"}, {"score":0.8702095746994019, "tag":"Pet"}, {"score":0.8646901249885559, "tag":"Mammal"}, {"score":0.8270695209503174, "tag":"Animal"}, {"score":0.2900576591491699, "tag":"Snow"}, {"score":0.22053982317447662, "tag":"Winter"}, {"score":0.1604217290878296, "tag":"Dog breed"}, {"score":0.14872552454471588, "tag":"Carnivore"}, {"score":0.08632490038871765, "tag":"Puppy"}, {"score":0.07958601415157318, "tag":"Wildlife"}]}
>>> print( "\nPhrase Extractor" )
>>> print( paralleldots.phrase_extractor( text ) )
{"keywords":[{"relevance_score":3, "keyword":"Hyderabad Central University"}, {"relevance_score":2, "keyword":"Rohith Vemula"}, {"relevance_score":2, "keyword":"JNU row"}, {"relevance_score":6, "keyword":"Human Resource Development Minister Smriti Irani"}, {"relevance_score":2, "keyword":"Lok Sabha"}, {"relevance_score":4, "keyword":"Prime Minister Narendra Modi"}, {"relevance_score":2, "keyword":"Dalit scholar"}], "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions"}
>>> print( "\nBatch Phrase Extractor" )
>>> print( paralleldots.batch_phrase_extractor( data ) )
{'batch': [{'keywords': [], 'code': 200}, {'keywords': [{'relevance_score': 1, 'keyword': 'school'}], 'code': 200}, {'keywords': [{'relevance_score': 2, 'keyword': 'fag son'}], 'code': 200}, {'keywords': [{'relevance_score': 2, 'keyword': 'throat infection'}], 'code': 200}]}
>>> print( "\nPopularity" )
>>> print( paralleldots.popularity( path ) )
{"Popular":"38.1271243095", "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "Not Popular":"61.8728756905"}
>>> print( "\nPopularity: URL Method" )
>>> print( paralleldots.popularity_url( url ) )
{"Popular":"68.9268052578", "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: https://www.paralleldots.com/terms-and-conditions", "Not Popular":"31.0731947422"}
>>> print( "\nSentiment" )
>>> print( paralleldots.sentiment( text ) )
{"probabilities":{"positive":0.266, "neutral":0.549, "negative":0.185}, "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "sentiment":"neutral"}
>>> print( "\nTarget Sentiment" )
>>> print( paralleldots.sentiment( text ) )
{"sentiment":{"negative":0.01,"neutral":0.738,"positive":0.251}, "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions"}
>>> print( "\nBatch Sentiment" )
>>> print( paralleldots.batch_sentiment( data ) )
{'batch': [{'probabilities': {'positive': 0.69, 'neutral': 0.265, 'negative': 0.046}, 'code': 200, 'sentiment': 'positive'}, {'probabilities': {'positive': 0.061, 'neutral': 0.578, 'negative': 0.361}, 'code': 200, 'sentiment': 'neutral'}, {'probabilities': {'positive': 0.527, 'neutral': 0.198, 'negative': 0.275}, 'code': 200, 'sentiment': 'positive'}, {'probabilities': {'positive': 0.077, 'neutral': 0.015, 'negative': 0.908}, 'code': 200, 'sentiment': 'negative'}]}
>>> print( "\nSentiment - Lang: Fr". )
>>> print( paralleldots.sentiment( lang_text, lang_code ) )
{"probabilities":{"positive":0.02, "neutral":0.291, "negative":0.689}, "usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "sentiment":"negative"}
>>> print( "\nSimilarity" )
>>> print( paralleldots.similarity( "I love fish and ice cream!", "fish and ice cream are the best!" ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "actual_score":0.848528, "normalized_score":4.936506}
>>> print( "\nTaxonomy" )
>>> print( paralleldots.taxonomy( text ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "taxonomy":[{"tag":"News and Politics/Law", "confidence_score":0.845402}, {"tag":"Hobbies & Interests/Workshops and Classes", "confidence_score":0.878964}, {"tag":"Business and Finance/Industries", "confidence_score":0.7353}]}
>>> print( "\nBatch Taxonomy" )
>>> print( paralleldots.batch_taxonomy( data ) )
{'batch': [{'taxonomy': [{'tag': 'health and fitness/drugs', 'confidence_score': 0.996437}, {'tag': 'family and parenting/babies and toddlers', 'confidence_score': 0.967404}, {'tag': 'automotive and vehicles/motor shows', 'confidence_score': 0.6848993897438049}], 'code': 200}, {'taxonomy': [{'tag': 'health and fitness/dental care', 'confidence_score': 0.977439}, {'tag': 'family and parenting/babies and toddlers', 'confidence_score': 0.961832}, {'tag': 'education/school', 'confidence_score': 0.970684}], 'code': 200}, {'taxonomy': [{'tag': 'family and parenting/parenting teens', 'confidence_score': 0.9779467582702637}, {'tag': 'health and fitness/therapy', 'confidence_score': 0.972425}, {'tag': 'pets/cats', 'confidence_score': 0.9049649834632874}], 'code': 200}, {'taxonomy': [{'tag': 'health and fitness/disease', 'confidence_score': 0.985712}, {'tag': 'family and parenting/adoption', 'confidence_score': 0.974752}, {'tag': 'pets/cats', 'confidence_score': 0.97041}], 'code': 200}]}
>>> print( "\nText Parser" )
>>> print( paralleldots.text_parser( text ) )
{"usage":"By accessing ParallelDots API or using information generated by ParallelDots API, you are agreeing to be bound by the ParallelDots API Terms of Use: http://www.paralleldots.com/terms-and-conditions", "output":[{"text":"Prime", "Dependency":"compound", "Tags":"noun"}, {"text":"Minister", "Dependency":"compound", "Tags":"noun"}, {"text":"Narendra", "Dependency":"compound", "Tags":"noun"}, {"text":"Modi", "Dependency":"nominal subject", "Tags":"noun"}, {"text":"tweeted", "Dependency":"root", "Tags":"verb"}, {"text":"a", "Dependency":"determiner", "Tags":"determiner"}, {"text":"link", "Dependency":"direct object", "Tags":"noun"}, {"text":"to", "Dependency":"prepositional modifier", "Tags":"preposition or conjunction"}, {"text":"the", "Dependency":"determiner", "Tags":"determiner"}, {"text":"speech", "Dependency":"compound", "Tags":"noun"}, {"text":"Human", "Dependency":"compound", "Tags":"noun"}, {"text":"Resource", "Dependency":"compound", "Tags":"noun"}, {"text":"Development", "Dependency":"compound", "Tags":"noun"}, {"text":"Minister", "Dependency":"compound", "Tags":"noun"}, {"text":"Smriti", "Dependency":"compound", "Tags":"noun"}, {"text":"Irani", "Dependency":"object of a preposition", "Tags":"noun"}, {"text":"in", "Dependency":"prepositional modifier", "Tags":"preposition or conjunction"}, {"text":"the", "Dependency":"determiner", "Tags":"determiner"}, {"text":"Lok", "Dependency":"compound", "Tags":"noun"}, {"text":"Sabha", "Dependency":"object of a preposition", "Tags":"noun"}, {"text":"during", "Dependency":"prepositional modifier", "Tags":"preposition or conjunction"}, {"text":"the", "Dependency":"determiner", "Tags":"determiner"}, {"text":"debate", "Dependency":"object of a preposition", "Tags":"noun"}, {"text":"on", "Dependency":"prepositional modifier", "Tags":"preposition or conjunction"}, {"text":"the", "Dependency":"determiner", "Tags":"determiner"}, {"text":"ongoing", "Dependency":"adjectival modifier", "Tags":"adjective"}, {"text":"JNU", "Dependency":"compound", "Tags":"noun"}, {"text":"row", "Dependency":"object of a preposition", "Tags":"noun"}, {"text":"and", "Dependency":"coordinating conjunction", "Tags":"conjuction"}, {"text":"the", "Dependency":"determiner", "Tags":"determiner"}, {"text":"suicide", "Dependency":"conjunct", "Tags":"noun"}, {"text":"of", "Dependency":"prepositional modifier", "Tags":"preposition or conjunction"}, {"text":"Dalit", "Dependency":"compound", "Tags":"noun"}, {"text":"scholar", "Dependency":"compound", "Tags":"noun"}, {"text":"Rohith", "Dependency":"compound", "Tags":"noun"}, {"text":"Vemula", "Dependency":"object of a preposition", "Tags":"noun"}, {"text":"at", "Dependency":"prepositional modifier", "Tags":"preposition or conjunction"}, {"text":"the", "Dependency":"determiner", "Tags":"determiner"}, {"text":"Hyderabad", "Dependency":"compound", "Tags":"noun"}, {"text":"Central", "Dependency":"compound", "Tags":"noun"}, {"text":"University", "Dependency":"object of a preposition", "Tags":"noun"}]}
>>> paralleldots.usage()
{ "paying": False, "visual_monthly_quota": 100, "visual_daily_quota": 1000, "monthly_quota": 10000, "daily_quota": 1000, "excel_monthly_quota": 1000, "excel_daily_quota": 100 }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ParallelDots-3.2.14.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

ParallelDots-3.2.14-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file ParallelDots-3.2.14.tar.gz.

File metadata

  • Download URL: ParallelDots-3.2.14.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.12

File hashes

Hashes for ParallelDots-3.2.14.tar.gz
Algorithm Hash digest
SHA256 467195f3b9eea8acdcaf87bde944fb2fe8de4ca730c7bf34be7366f47a62e8ee
MD5 4ca4bb30d871cc4b38db904b3a2d67f2
BLAKE2b-256 c6afa1c575da7c8d3f1e6d34242037d2bf93ec363aed80e5fa6097bb02678c91

See more details on using hashes here.

File details

Details for the file ParallelDots-3.2.14-py3-none-any.whl.

File metadata

  • Download URL: ParallelDots-3.2.14-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.12

File hashes

Hashes for ParallelDots-3.2.14-py3-none-any.whl
Algorithm Hash digest
SHA256 aa7118b8cef8c5952f1307291df9ffcdade59a3b42a1e7132d01abc1cfbff34a
MD5 7157939cd029994eb201abce6cd9900c
BLAKE2b-256 e0f08a17d89b1aadafeff37554a9b92b2602b0510254b33162994fbc1691a8d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page