Skip to main content

A Python library for the manipulation of Pauli matrices

Project description

PauliAlgebra

win ubu mac

PauliAlgebra is a module to deal with exact calculations of Pauli matrices

The interface to the module is the class PauliVector that can be used to instantiate any 2x2 Hermitian matrix

from PauliAlgebra import PauliVector

M = PauliVector([
        1, # Identity
        2, # sigma x
        0, # sigma y
        1j # sigma z
    ])

PauliVector is fully compatible with sympy expressions!

Alternatively, the module exposes the standard matrices

  • Id : 2x2 Identity

  • sigma_x

  • sigma_y

  • sigma_z

  • sigma_plus

    sigma_plus = (sigma_x + 1j*sigma_y)/2 
    # ((0,1)
    #  (0,0))
    
  • sigma_minus = (sigma_x - 1j*sigma_y)/2

    sigma_minus = (sigma_x - 1j*sigma_y)/2 
    # ((0,0)
    #  (1,0))
    
  • P_up

    P_up = (Id + sigma_z)/2
    # ((1,0)
    #  (0,0))
    
  • P_down

    P_down = (Id - sigma_z)/2
    # ((0,0)
    #  (0,1))
    

Arithmetic Operations

PauliVector supports the following arithmetic operations:

  • Addition and subtraction with another PauliVector
  • Multiplication with a scalar or another PauliVector (performs matrix multiplication)
  • Division by a scalar

So the above example could have been written as

from PauliAlgebra import (
    Id,
    sigma_x,
    sigma_z
)

M = Id + 2*sigma_x + 1j*sigma_z

Commutators and Anticommutators

This module allows for fast adn exact computation of commutators and anticommutators of two PauliVector using the relationship

$$ \left(\vec{a} \cdot \vec{\sigma}\right)\left(\vec{b} \cdot \vec{\sigma}\right) = Id~ \left(\vec{a} \cdot\vec{b} \right) + i \left(\vec{a} \times\vec{b} \right) \cdot \vec{\sigma} $$

and the (anti)commutativity of dot and cross product.

A = sigma_x
B = sigma_y

commAB = PauliVector.commutator(A,B) # = 2j*sigma_z
anticommAB = PauliVector.anticommutator(A,B) # = 0

Exponentiation

PauliVector supports exponentiation with the standard formula

$$ \exp\left(i \theta \hat{n} \cdot \vec{\sigma} \right) = Id~ \cos{\theta} + i \hat{n} \cdot \vec{\sigma} \sin{\theta} $$

M = -1j*np.pi*sigma_x

expM = M.exponentiate() # == Id

Usage with sympy expressions

PauliVector is fully compatible with sympy expressions!

theta = sp.symbols(r'\theta')

M = (Id* sp.sin(theta) + sigma_z*sp.cos(theta))/sp.sqrt(2)

M.to_sp().applyfunc(sp.trigsimp)
# [sqrt(2)*sin(\theta + pi/4),                           0],
# [                         0, -sqrt(2)*cos(\theta + pi/4)]]

For complex expressions M.simplify() will simplify the Id, x,y, and z components

Going back to numpy or sympy

Once you are done performing algebra on a PauliVector you can turn it back into more common types

  • M.toMatrix() -> np.ndarray (shape==(2,2))
  • M.to_sp() -> sp.Matrix (shape==(2,2))

Installation

PauliAlgebra is available on pypi! It can be yours by simply

$ pip install PauliAlgebra

in the environment of your choice!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

paulialgebra-1.0.0.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

PauliAlgebra-1.0.0-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file paulialgebra-1.0.0.tar.gz.

File metadata

  • Download URL: paulialgebra-1.0.0.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for paulialgebra-1.0.0.tar.gz
Algorithm Hash digest
SHA256 4bb802da5db2ed5c012f76a30ff7c52f734858fd1d51ad3b8b90f8f2c06dbe3b
MD5 2d0416aa441f015a88ad610e9d10a426
BLAKE2b-256 c051143c2c50ef31966ecc46d4aba00151c45d0bb376058f4179417a4751f6ff

See more details on using hashes here.

File details

Details for the file PauliAlgebra-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for PauliAlgebra-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6cb4deecd38a1d1494a6c7f21eec0feee20cfb8ba7e6bc77f2c6457be4fb3dce
MD5 cc8fc844625232cb939ae8ce79425894
BLAKE2b-256 f754bd25d83ef99a530aeff3f14401ab431b2e1b5c6d1a5bcb26998915701034

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page