Skip to main content

PENMAN notation for graphs (e.g., AMR)

Project description

Penman — a Python library for PENMAN graph notation

PyPI Version Python Support .github/workflows/checks.yml Documentation Status

This package models graphs encoded in PENMAN notation (e.g., AMR), such as the following for the boy wants to go:

(w / want-01
   :ARG0 (b / boy)
   :ARG1 (g / go
            :ARG0 b))

The Penman package may be used as a Python library or as a script.

Features

  • Read and write PENMAN-serialized graphs or triple conjunctions
  • Read metadata in comments (e.g., # ::id 1234)
  • Read surface alignments (e.g., foo~e.1,2)
  • Inspect and manipulate the graph or tree structures
  • Customize graphs for writing:
    • Adjust indentation and compactness
    • Select a new top node
    • Rearrange edges
    • Restructure the tree shape
    • Relabel node variables
  • Transform the graph
    • Canonicalize roles
    • Reify and dereify edges
    • Reify attributes
    • Embed the tree structure with additional TOP triples
  • AMR model: role inventory and transformations
  • Check graphs for model compliance
  • Tested (but not yet 100% coverage)
  • Documented (see the documentation)

Library Usage

>>> import penman
>>> g = penman.decode('(b / bark-01 :ARG0 (d / dog))')
>>> g.triples
[('b', ':instance', 'bark-01'), ('b', ':ARG0', 'd'), ('d', ':instance', 'dog')]
>>> g.edges()
[Edge(source='b', role=':ARG0', target='d')]
>>> print(penman.encode(g, indent=3))
(b / bark-01
   :ARG0 (d / dog))
>>> print(penman.encode(g, indent=None))
(b / bark-01 :ARG0 (d / dog))

(more information)

Script Usage

$ echo "(w / want-01 :ARG0 (b / boy) :ARG1 (g / go :ARG0 b))" | penman
(w / want-01
   :ARG0 (b / boy)
   :ARG1 (g / go
            :ARG0 b))
$ echo "(w / want-01 :ARG0 (b / boy) :ARG1 (g / go :ARG0 b))" | penman --make-variables="a{i}"
(a0 / want-01
    :ARG0 (a1 / boy)
    :ARG1 (a2 / go
              :ARG0 a1))

(more information)

Demo

For a demonstration of the API usage, see the included Jupyter notebook:

PENMAN Notation

A description of the PENMAN notation can be found in the documentation. This module expands the original notation slightly to allow for untyped nodes (e.g., (x)) and anonymous relations (e.g., (x : (y))). It also accommodates slightly malformed graphs as well as surface alignments.

Citation

If you make use of Penman in your work, please cite Goodman, 2020. The BibTeX is below:

@inproceedings{goodman-2020-penman,
    title = "{P}enman: An Open-Source Library and Tool for {AMR} Graphs",
    author = "Goodman, Michael Wayne",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-demos.35",
    pages = "312--319",
    abstract = "Abstract Meaning Representation (AMR) (Banarescu et al., 2013) is a framework for semantic dependencies that encodes its rooted and directed acyclic graphs in a format called PENMAN notation. The format is simple enough that users of AMR data often write small scripts or libraries for parsing it into an internal graph representation, but there is enough complexity that these users could benefit from a more sophisticated and well-tested solution. The open-source Python library Penman provides a robust parser, functions for graph inspection and manipulation, and functions for formatting graphs into PENMAN notation. Many functions are also available in a command-line tool, thus extending its utility to non-Python setups.",
}

For the graph transformation/normalization work, please use the following:

@inproceedings{Goodman:2019,
  title     = "{AMR} Normalization for Fairer Evaluation",
  author    = "Goodman, Michael Wayne",
  booktitle = "Proceedings of the 33rd Pacific Asia Conference on Language, Information, and Computation",
  year      = "2019",
  pages     = "47--56",
  address   = "Hakodate"
}

Disclaimer

This project is not affiliated with ISI, the PENMAN project, or the AMR project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

penman-1.3.0.tar.gz (100.9 kB view details)

Uploaded Source

Built Distribution

penman-1.3.0-py3-none-any.whl (43.2 kB view details)

Uploaded Python 3

File details

Details for the file penman-1.3.0.tar.gz.

File metadata

  • Download URL: penman-1.3.0.tar.gz
  • Upload date:
  • Size: 100.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for penman-1.3.0.tar.gz
Algorithm Hash digest
SHA256 efdaf3b10dd54220318b3b8948c5b36114cf8718cb6eb67fa0f32dbb3515c2bf
MD5 fbb4a3720c4a8d6d63ad0956e454d8db
BLAKE2b-256 be784aa0bf4bbe73f2bbf3403861901cedb5dd7601ecc4dd6bfabde3b8ce74b3

See more details on using hashes here.

Provenance

File details

Details for the file penman-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: penman-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 43.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for penman-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 00665ba0bd8507e05e5327bbe303f4327672762b21d5c58ad7a9f70c27cf64a2
MD5 d5e9c1af1560dbf55c6bc480f70a82b2
BLAKE2b-256 ba363e867863fec5281daec353560fb5c4502835f240e2d4c44f923aedde46fd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page