Skip to main content

PennyLane-Lightning plugin

Project description

Linux x86_64 tests (branch) Windows tests (branch) Linux x86_64 wheel builds (branch) Codecov coverage CodeFactor Grade Read the Docs PyPI PyPI - Python Version

The Lightning plugin ecosystem provides fast state-vector simulators written in C++.

PennyLane is a cross-platform Python library for quantum machine learning, automatic differentiation, and optimization of hybrid quantum-classical computations. PennyLane supports Python 3.9 and above.

Features

PennyLane-Lightning high performance simulators include the following backends:

  • lightning.qubit: is a fast state-vector simulator written in C++.

  • lightning.gpu: is a state-vector simulator based on the NVIDIA cuQuantum SDK. It notably implements a distributed state-vector simulator based on MPI.

  • lightning.kokkos: is a state-vector simulator written with Kokkos. It can exploit the inherent parallelism of modern processing units supporting the OpenMP, CUDA or HIP programming models.

  • lightning.tensor: is a tensor network simulator based on the NVIDIA cuQuantum SDK (requires NVIDIA GPUs with SM 7.0 or greater). This device is designed to simulate large-scale quantum circuits using tensor networks. For small circuits, state-vector simulator plugins may be more suitable. The supported method is Matrix Product State (MPS). This device does not currently support finite shots. Currently, the supported measurement types are expectation values and the supported differentiation methods are parameter-shift and finite-diff. Note that only 1,2-wire gates and gates that can be decomposed by PennyLane into 1,2-wire gates are supported.

The following table summarizes the supported platforms and the primary installation mode:

L-Qubit

L-GPU

L-GPU (MPI)

L-Kokkos (OMP)

L-Kokkos (CUDA)

L-Kokkos (HIP)

L-Tensor

Linux x86

pip

pip

source

pip

source

source

source

Linux ARM

pip

pip

pip

source

source

Linux PPC

pip

source

pip

source

source

MacOS x86

pip

pip

MacOS ARM

pip

pip

Windows

pip

Lightning-Qubit installation

Lightning-Qubit comes pre-installed with PennyLane. Please follow our installation instructions to install PennyLane.

Install from source

To build Lightning plugins from source you can run

PL_BACKEND=${PL_BACKEND} pip install pybind11 pennylane-lightning --no-binary :all:

where ${PL_BACKEND} can be lightning_qubit (default), lightning_gpu, lightning_kokkos, or lightning_tensor. The pybind11 library is required to bind the C++ functionality to Python.

A C++ compiler such as g++, clang++, or MSVC is required. On Debian-based systems, this can be installed via apt:

sudo apt -y update && sudo apt install -y g++ libomp-dev

where libomp-dev is included to also install OpenMP. On MacOS, we recommend using the latest version of clang++ and libomp:

brew install llvm libomp

The Lightning-GPU backend has several dependencies (e.g. CUDA, custatevec-cu12, etc.), and hence we recommend referring to Lightning-GPU installation section. Similarly, for Lightning-Kokkos it is recommended to configure and install Kokkos independently as prescribed in the Lightning-Kokkos installation section.

Development installation

For development and testing, you can install by cloning the repository:

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
pip install -r requirements.txt
PL_BACKEND=${PL_BACKEND} python scripts/configure_pyproject_toml.py
pip install -e . --config-settings editable_mode=compat -vv

Note that subsequent calls to pip install -e . will use cached binaries stored in the build folder, and the pyproject.toml file defined by the configuration script. Run make clean if you would like to recompile from scratch.

You can also pass cmake options with CMAKE_ARGS as follows:

CMAKE_ARGS="-DENABLE_OPENMP=OFF -DENABLE_BLAS=OFF" pip install -e . --config-settings editable_mode=compat -vv

Supported options are -DENABLE_WARNINGS, -DENABLE_NATIVE (for -march=native) -DENABLE_BLAS, -DENABLE_OPENMP, and -DENABLE_CLANG_TIDY.

Compile MSVC (Windows)

Lightning-Qubit can be compiled on Windows using the Microsoft Visual C++ compiler. You need cmake and appropriate Python environment (e.g. using Anaconda).

We recommend using [x64 (or x86)] Native Tools Command Prompt for VS [version] to compile the library. Be sure that cmake and python can be called within the prompt.

cmake --version
python --version

Then a common command will work.

pip install -r requirements.txt
pip install -e .

Note that OpenMP and BLAS are disabled on this platform.

Testing

To test that a plugin is working correctly, one can check both Python and C++ unit tests for each device.

Python Test

Test the Python code with:

make test-python device=${PL.DEVICE}

where ${PL.DEVICE} differ from ${PL_BACKEND} by replacing the underscore by a dot. And can be

  • lightning.qubit (default)

  • lightning.gpu

  • lightning.kokkos

  • lightning.tensor

C++ Test

The C++ code can be tested with

PL_BACKEND=${PL_BACKEND} make test-cpp

Lightning-GPU installation

For the majority of cases, Lightning-GPU can be installed by following our installation instructions at pennylane.ai/install.

Install Lightning-GPU from source

To install Lightning-GPU from the package sources using the direct SDK path, Lightning-Qubit should be install before Lightning-GPU (compilation is not necessary):

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
pip install -r requirements.txt
PL_BACKEND="lightning_qubit" python scripts/configure_pyproject_toml.py
SKIP_COMPILATION=True pip install -e . --config-settings editable_mode=compat -vv

Then the custatevec-cu12 library can be installed and set a CUQUANTUM_SDK environment variable.

export CUQUANTUM_SDK=$(python -c "import site; print( f'{site.getsitepackages()[0]}/cuquantum')")

The Lightning-GPU can then be installed with pip:

PL_BACKEND="lightning_gpu" python scripts/configure_pyproject_toml.py
python -m pip install -e . --config-settings editable_mode=compat -vv

To simplify the build, we recommend using the containerized build process described in Docker support section.

Install Lightning-GPU with MPI

Building Lightning-GPU with MPI also requires the NVIDIA cuQuantum SDK (currently supported version: custatevec-cu12), mpi4py and CUDA-aware MPI (Message Passing Interface). CUDA-aware MPI allows data exchange between GPU memory spaces of different nodes without the need for CPU-mediated transfers. Both the MPICH and OpenMPI libraries are supported, provided they are compiled with CUDA support. The path to libmpi.so should be found in LD_LIBRARY_PATH. It is recommended to install the NVIDIA cuQuantum SDK and mpi4py Python package within pip or conda inside a virtual environment. Please consult the cuQuantum SDK , mpi4py, MPICH, or OpenMPI install guide for more information.

Before installing Lightning-GPU with MPI support using the direct SDK path, please ensure Lightning-Qubit, CUDA-aware MPI and custatevec are installed and the environment variable CUQUANTUM_SDK is set properly. Then Lightning-GPU with MPI support can then be installed in the editable mode:

PL_BACKEND="lightning_gpu" python scripts/configure_pyproject_toml.py
CMAKE_ARGS="-DENABLE_MPI=ON" python -m pip install -e . --config-settings editable_mode=compat -vv

Test Lightning-GPU with MPI

You may test the Python layer of the MPI enabled plugin as follows:

mpirun -np 2 python -m pytest mpitests --tb=short

The C++ code is tested with

rm -rf ./BuildTests
cmake . -BBuildTests -DBUILD_TESTS=1 -DBUILD_TESTS=1 -DENABLE_MPI=ON -DCUQUANTUM_SDK=<path to sdk>
cmake --build ./BuildTests --verbose
cd ./BuildTests
for file in *runner_mpi ; do mpirun -np 2 ./BuildTests/$file ; done;

Lightning-Kokkos installation

On most Linux systems, Lightning-Kokkos can be installed via Spack or Docker by following our installation instructions at pennylane.ai/install.

Install Lightning-Kokkos from source

As Kokkos enables support for many different HPC-targeted hardware platforms, lightning.kokkos can be built to support any of these platforms when building from source.

Install Kokkos (Optional)

We suggest first installing Kokkos with the wanted configuration following the instructions found in the Kokkos documentation. For example, the following will build Kokkos for NVIDIA A100 cards

Download the Kokkos code. Lightning Kokkos was tested with Kokkos version <= 4.3.01

# Replace x, y, and z by the correct version
wget https://github.com/kokkos/kokkos/archive/refs/tags/4.x.yz.tar.gz
tar -xvf 4.x.y.z.tar.gz
cd kokkos-4.x.y.z

Build Kokkos for NVIDIA A100 cards (SM80 architecture)

cmake -S . -B build -G Ninja \
    -DCMAKE_BUILD_TYPE=RelWithDebugInfo \
    -DCMAKE_INSTALL_PREFIX=/opt/kokkos/4.x.y.z/AMPERE80 \
    -DCMAKE_CXX_STANDARD=20 \
    -DBUILD_SHARED_LIBS:BOOL=ON \
    -DBUILD_TESTING:BOOL=OFF \
    -DKokkos_ENABLE_SERIAL:BOOL=ON \
    -DKokkos_ENABLE_CUDA:BOOL=ON \
    -DKokkos_ARCH_AMPERE80:BOOL=ON \
    -DKokkos_ENABLE_EXAMPLES:BOOL=OFF \
    -DKokkos_ENABLE_TESTS:BOOL=OFF \
    -DKokkos_ENABLE_LIBDL:BOOL=OFF
cmake --build build && cmake --install build
export CMAKE_PREFIX_PATH=/opt/kokkos/4.x.y.z/AMPERE80:$CMAKE_PREFIX_PATH

Next, append the install location to CMAKE_PREFIX_PATH. Note that the C++20 standard is required (-DCMAKE_CXX_STANDARD=20 option), and hence CUDA v12 is required for the CUDA backend.

Install Lightning-Kokkos

If an installation of Kokkos is not found, then our builder will clone and install it during the build process. Lightning-Qubit should be installed (compilation is not necessary):

The simplest way to install Lightning-Kokkos (OpenMP backend) through pip.

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
PL_BACKEND="lightning_qubit" python scripts/configure_pyproject_toml.py
SKIP_COMPILATION=True pip install -e . --config-settings editable_mode=compat
PL_BACKEND="lightning_kokkos" python scripts/configure_pyproject_toml.py
CMAKE_ARGS="-DKokkos_ENABLE_OPENMP=ON" python -m pip install -e . --config-settings editable_mode=compat -vv

The supported backend options are

SERIAL

OPENMP

THREADS

HIP

CUDA

and the corresponding build options are -DKokkos_ENABLE_XXX=ON, where XXX needs be replaced by the backend name, for instance OPENMP.

One can activate simultaneously one serial, one parallel CPU host (e.g. OPENMP, THREADS) and one parallel GPU device backend (e.g. HIP, CUDA), but not two of any category at the same time. For HIP and CUDA, the appropriate software stacks are required to enable compilation and subsequent use. Similarly, the CMake option -DKokkos_ARCH_{...}=ON must also be specified to target a given architecture. A list of the architectures is found on the Kokkos wiki. Note that THREADS backend is not recommended since Kokkos does not guarantee its safety.

Lightning-Tensor installation

Lightning-Tensor requires CUDA 12 and the cuQuantum SDK (only the cutensornet library is required). The SDK may be installed within the Python environment site-packages directory using pip or conda or the SDK library path appended to the LD_LIBRARY_PATH environment variable. Please see the cuQuantum SDK install guide for more information.

Install Lightning-Tensor from source

Lightning-Qubit should be installed before Lightning-Tensor (compilation is not necessary):

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
pip install -r requirements.txt
PL_BACKEND="lightning_qubit" python scripts/configure_pyproject_toml.py
SKIP_COMPILATION=True pip install -e . --config-settings editable_mode=compat

Then the cutensornet library can be installed and set a CUQUANTUM_SDK environment variable.

export CUQUANTUM_SDK=$(python -c "import site; print( f'{site.getsitepackages()[0]}/cuquantum')")

The Lightning-Tensor can then be installed with pip:

PL_BACKEND="lightning_tensor" python scripts/configure_pyproject_toml.py
pip install -e . --config-settings editable_mode=compat -vv

Please refer to the plugin documentation as well as to the PennyLane documentation for further reference.

Docker support

Docker images for the various backends are found on the PennyLane Docker Hub page, where there is also a detailed description about PennyLane Docker support. Briefly, one can build the Docker Lightning images using:

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
docker build -f docker/Dockerfile --target ${TARGET} .

where ${TARGET} is one of the following

  • wheel-lightning-qubit

  • wheel-lightning-gpu

  • wheel-lightning-kokkos-openmp

  • wheel-lightning-kokkos-cuda

  • wheel-lightning-kokkos-rocm

Contributing

We welcome contributions - simply fork the repository of this plugin, and then make a pull request containing your contribution. All contributors to this plugin will be listed as authors on the releases.

We also encourage bug reports, suggestions for new features and enhancements, and even links to cool projects or applications built on PennyLane.

Black & Pylint

If you contribute to the Python code, please mind the following. The Python code is formatted with the PEP 8 compliant opinionated formatter Black (black==23.7.0). We set a line width of a 100 characters. The Python code is statically analyzed with Pylint. We set up a pre-commit hook (see Git hooks) to run both of these on git commit. Please make your best effort to comply with black and pylint before using disabling pragmas (e.g. # pylint: disable=missing-function-docstring).

Authors

Lightning is the work of many contributors.

If you are using Lightning for research, please cite:

@misc{
    asadi2024,
    title={{Hybrid quantum programming with PennyLane Lightning on HPC platforms}},
    author={Ali Asadi and Amintor Dusko and Chae-Yeun Park and Vincent Michaud-Rioux and Isidor Schoch and Shuli Shu and Trevor Vincent and Lee James O'Riordan},
    year={2024},
    eprint={2403.02512},
    archivePrefix={arXiv},
    primaryClass={quant-ph},
    url={https://arxiv.org/abs/2403.02512},
}

Support

If you are having issues, please let us know by posting the issue on our Github issue tracker, or by asking a question in the forum.

License

The Lightning plugins are free and open source, released under the Apache License, Version 2.0. The Lightning-GPU and Lightning-Tensor plugins make use of the NVIDIA cuQuantum SDK headers to enable the device bindings to PennyLane, which are held to their own respective license.

Acknowledgements

PennyLane Lightning makes use of the following libraries and tools, which are under their own respective licenses:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PennyLane_Lightning_Kokkos-0.38.0.tar.gz (562.4 kB view details)

Uploaded Source

Built Distributions

PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-manylinux_2_28_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-manylinux_2_28_aarch64.whl (17.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ x86-64

PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-manylinux_2_28_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-manylinux_2_28_aarch64.whl (17.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-manylinux_2_28_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-manylinux_2_28_aarch64.whl (17.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-manylinux_2_28_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-manylinux_2_28_aarch64.whl (17.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0.tar.gz.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0.tar.gz
Algorithm Hash digest
SHA256 424e72216ed18026f9db835cde4bf694a36835426203f5063502e2a5150d3307
MD5 b5a309dd9d96fd1c53bb0674eb3d17f2
BLAKE2b-256 5dda2b6c0c0d0981699cd8aa34520ed9fbb3f04a6511b58390891d948d2b728a

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 31bddcbbf18ad30146a8d634fdb07ca4b71018e1ef434ef8b5a4359af1e5c132
MD5 e40017d81e14a4198c7e2e3636f16b73
BLAKE2b-256 66a6aab6190ae9547b5bc8bb15bf4161c4c4fcc3a1bf3dcbc91d8239082dfffe

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 51b307e8606dc3c2f6e4d544f57b4dcf234a206412ca3d282939077ad7a40745
MD5 588f8fc22ba4b5438b255bf6be9282fe
BLAKE2b-256 480ff1236430381559c3b9cd52aeb16f59ceb8e543c0aa97f41ed56e3078d6ea

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 aa0201f305ffe93140efffc910d45b50475107c6ae2fc279ba0a522b873c5268
MD5 2d9de83fa2cd850ae14c1726dbe6c5c7
BLAKE2b-256 9a7e6f7c31169d4dcdc776117cd471782e64685f3f0ad4cb57a46c07d2240031

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 037143c6f1af8c28fbb1e45a5af14819a864c6c21b79191a07e8cd8ee59b8f2b
MD5 b8acaf298acdf8210434e8eaabd26ae4
BLAKE2b-256 66b63a24eb7d377a304b464939a07f560a83376386fac840493be334bee497d0

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0c27aae9c4a0f909b04fbe7219f9466adc97301ef6adefb1306385d1728a6958
MD5 ff5e4a959318428561a69246d296b0c1
BLAKE2b-256 ccac175ba068975cd2ac7625939507109bc48b51a8a00ba0c3b82ca6dc7519e2

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 31400d6577d2e62ce60f8f422f8d5a449da6a192dbc490aa0387320355cb5b79
MD5 15ad5bc867aa15df45e8a1acce2e10fa
BLAKE2b-256 bb1ef9b10c57d24bd5ac71c5cd8250bf201417a9b66e93726b68f826f17b6124

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f9e234750c7d8ea3bc3568f3c8e37033e4a9c76219ed5c895eebb4585cb8e500
MD5 ff1d403f5335f0bac4e375ca66c34122
BLAKE2b-256 7dc0281538d67139247480a69adb991e797816bd61b0ca7dad387d627074c290

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 82d7769d460f1b8c52853f216f1fb0b04efeb3d71d067ae4fa995f28736ada9d
MD5 3023155cd577e95862c6550849752c47
BLAKE2b-256 16ce520122b0e5ceaa19a8dd1e021769b648d0fc416876b5fd9bf76a85304645

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 833a0bc91f13b1e5545338bf5c056165d72a90dda9b190f074281f16180e1068
MD5 10206a11dac9b7b48ad4da4737b75d3f
BLAKE2b-256 984a3d4ed591bea9572d11788f56be66ac835387f9f1e49b523eb3975a42f154

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d88e4739b401349e9b0b6fafb3c96f1a009a4e29aef9c3c0e2c1a44ee95af208
MD5 a0078de9d4bd90f31cdb5cae22e5d432
BLAKE2b-256 c303602b8166a04d0080c7d2a5391b8714277580d0fe06d78e76e7b3c8520303

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 32c10bf4023037c9af32a02587438244e468b2a7986d416953588258acf0a545
MD5 c6be1c3376c05f2714e9ec4554c3dc59
BLAKE2b-256 e26f1fde258e5690c71ec92f58535affa268d7dcc82c4c33fdfe6405460beef5

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 913d64b96d1ec0e17cd72d1883d1555598de5cef7899f2521b5b468adeb1aee7
MD5 66162dc902a3d612497507a286834f22
BLAKE2b-256 ecb5bc5e8950550f4b3ab30864fde275092b92316eb72d1e953ec3fbc9d050e1

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 49d38e5648cc102d4253731417bdab691e73ce730f1b558310a3ff83217c24f3
MD5 fb368271751a49027ff86a959297e9e9
BLAKE2b-256 ce380afb59e6003fe67aaf1cfefdacbac25a5fa6cc191e16dd7850eefa4c2c2b

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 da80fcc80227fc53a80b71b660063e2c7d69eec25f5309c4927f8f1a7380886c
MD5 2d56facdcf93d19bfc1e31edf67e7dab
BLAKE2b-256 97bd5f00aea2b089fa5b3108c2cb894f5fb3245c0a52c46991d8d021dfdd6e76

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 1cbf377f82b1fb99a8b4a5c88a3dda5e9a7d519e630a1df203494f8914f6c062
MD5 875cf05d04d6a6fc5464c02a782d54ed
BLAKE2b-256 c79b2bb29466184e970ddf0c629b918e22879f06976d6a4b9ad055b78cdab423

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.38.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9db5f24b5f6eb393e31dbf7382424bd8beee3291f85a89101568662337032022
MD5 99bd30947b85dfbfbf25e802ff5b1289
BLAKE2b-256 6348f5165087faa675c82e813b27947c1ff30860597fd28b4add106e470fc80b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page