Skip to main content

A low-code interpretable machine learning toolbox in Python.

Project description

drawing

An integrated Python toolbox for interpretable machine learning

pip install PiML

🚀 October 31, 2022: V0.4.0 is released with enriched models and enhanced diagnostics.

🚀 July 26, 2022: V0.3.0 is released with classic statistical models.

🚀 June 26, 2022: V0.2.0 is released with high-code APIs.

📢 May 4, 2022: V0.1.0 is launched with low-code UI/UX.

PiML (or π-ML, /ˈpaɪ·ˈem·ˈel/) is a new Python toolbox for interpretable machine learning model development and validation. Through low-code interface and high-code APIs, PiML supports a growing list of inherently interpretable ML models:

  1. GLM: Linear/Logistic Regression with L1 ∨ L2 Regularization
  2. GAM: Generalized Additive Models using B-splines
  3. Tree: Decision Tree for Classification and Regression
  4. FIGS: Fast Interpretable Greedy-Tree Sums (Tan, et al. 2022)
  5. XGB2: Extreme Gradient Boosted Trees of Depth 2 (Chen and Guestrin, 2016; Lengerich, et al. 2020)
  6. EBM: Explainable Boosting Machine (Nori, et al. 2019; Lou, et al. 2013)
  7. GAMI-Net: Generalized Additive Model with Structured Interactions (Yang, Zhang and Sudjianto, 2021)
  8. ReLU-DNN: Deep ReLU Networks using Aletheia Unwrapper and Sparsification (Sudjianto, et al. 2020)

PiML also works for arbitrary supervised ML models under regression and binary classification settings. It supports a whole spectrum of outcome testing, including but not limited to, the following:

  1. Accuracy: popular metrics like MSE, MAE for regression tasks and ACC, AUC, Recall, Precision, F1-score for binary classification tasks.
  2. Explainability: post-hoc global explainers (PFI, PDP, ALE) and local explainers (LIME, SHAP).
  3. Fairness: disparity test and segmented analysis by integrating the solas-ai package.
  4. WeakSpot: identification of weak regions with high residuals by slicing techniques.
  5. Overfit: identification of overfitting regions according ot train-test performance gap.
  6. Reliability: assessment of prediction uncertainty by split conformal prediction techniques.
  7. Robustness: evaluation of performance degradation under covariate noise perturbation.
  8. Resilience: evaluation of performance degradation under different out-of-distribution scenarios.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

PiML-0.6.0.post2-cp310-none-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

PiML-0.6.0.post2-cp310-none-manylinux_2_17_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PiML-0.6.0.post2-cp310-none-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PiML-0.6.0.post2-cp310-none-macosx_10_12_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

PiML-0.6.0.post2-cp39-none-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

PiML-0.6.0.post2-cp39-none-manylinux_2_17_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PiML-0.6.0.post2-cp39-none-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

PiML-0.6.0.post2-cp39-none-macosx_10_12_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

PiML-0.6.0.post2-cp38-none-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

PiML-0.6.0.post2-cp38-none-manylinux_2_17_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PiML-0.6.0.post2-cp38-none-macosx_11_0_arm64.whl (9.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

PiML-0.6.0.post2-cp38-none-macosx_10_12_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

PiML-0.6.0.post2-cp37-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

PiML-0.6.0.post2-cp37-none-manylinux_2_17_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.7 manylinux: glibc 2.17+ x86-64

PiML-0.6.0.post2-cp37-none-macosx_10_12_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.7 macOS 10.12+ x86-64

File details

Details for the file PiML-0.6.0.post2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ed758c62dfb6f32ec7a82702461b32b8c9bd2f0570bb824b6fe8f18745d93201
MD5 20533cf25ee529383859574a409ec373
BLAKE2b-256 c4323bf8e342a4ccb3c69f8b430da157da5a428422395fe3e51a4fd14a305246

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp310-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp310-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d8caaaa60b6dd4ab2632beeaf4ac4f741f3a38e8d18487b83262b2c7ac2e9748
MD5 e55c60eb9e13d1d5ca621a8884093667
BLAKE2b-256 3f234327572fd2ac3bd1f6b78ed5b29f94ed4c425266c4e59f16505622295a20

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp310-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp310-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d798e4dac699495f6570b05ab0cc160881b9ef6de2b364bc2dc733a1174ac56
MD5 ea3862571fb5a0049b124ea07ff8e8af
BLAKE2b-256 d5d49db624a323ae6f3ea1998e889a032491f23db75bee843e9acaf910545f28

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp310-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp310-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7f9d528d4ca0f468418248d081a6a494b131e72475c437510452063d572e000b
MD5 278fe30499cf6733abc43c7a57404e22
BLAKE2b-256 cba8c1f18f44195f0bf1cb3c7c90b20dcb9955506cde0aec56ca47c5b47afd52

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8d1ca81ffcfcfdde2f7509d3bc65143099b7c2707f097b4d185b7f24b5380305
MD5 c606059b13861a7e6deaceecd88c2baf
BLAKE2b-256 b1bb59cf6d0292cbe652fcf6d883de59a56954808705863a23045bab8f21895d

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp39-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp39-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7fa3fd6d7a30ca5c3aea8753c62abcdc2c9b8d65a3c8efaa11922b648b3022aa
MD5 f34fe54a3168edc6be9af9fc6bbcfb0e
BLAKE2b-256 01fbad519fcc114a15b23e9e684b57ef86923388ae0b15933750e1c5c6280cb0

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp39-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp39-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58d6a2f4de8ee7f8f82fbf88f7037233e16e63889a07f13ca96cc8021b927ef4
MD5 ad1fc47c0ff49b24ffba88b881e18c13
BLAKE2b-256 9782995afed4e67d5766a225aca894616e5d093f5d520819c587c0d00d27c917

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp39-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp39-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9706e876d8b0341d82529977440e71c7899544e3534dea459e7d1d6fed6432f9
MD5 3a32322a25e6fd301943a50eae0fad3a
BLAKE2b-256 1a7d18c8e67cd25ea3703b75b269f7040e538ecb3797f155879c5be3d3573083

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 55865fa3fead2d34d342df10aa3b14e8d2e7d57995c3ce34cd38e93b7dd1cfbd
MD5 7c8de63cda037e1df6d9aadfaca9c165
BLAKE2b-256 034c289d7be939e37cf741a6e395fd4a8d41d061f33cbff0244ce3eb87b3bcee

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp38-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp38-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e532923792fba195545fa0c037e15423ea4fc57b8a4ff69397551f1ecc6420cd
MD5 0dab48aa2a4058789d8834ed81d801bf
BLAKE2b-256 f3ce282f102a7c98343383db720b2ef4f7de39a8f4245dec41f10ea66a476735

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp38-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp38-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 26935f0e75f9e2ee315dcadc83fd742f5e3802c4dfc07a2c14cf3e46aa717463
MD5 b890e82b23a901c7b881332bb399ef3a
BLAKE2b-256 c7401363be8a0e119a0d2d62d6e1b21f913f5fd52132bc7c76eb2d21a54c050b

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp38-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp38-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e864e530ddf0396b940d3d8bae815b339fda29abf7be80a70fc811f2627a1e05
MD5 02d77aa230c357d68353880085f6a2ae
BLAKE2b-256 287c9f4f7fb5563487197ba04f68a722ead94edadc0e0062d6795fe6592c65fd

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c2da9d53d8d1acea1e6100fb5c8df3f0e32f41ad95e20fbffaa2ba4c95890fd5
MD5 b32f8d9af6e67a2da4bcf8ef4a2fb928
BLAKE2b-256 ab3aced7c8d1a20dab80296cbeb744f9f0ba840895a4cf6a7ab3b86e61d553ed

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp37-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp37-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d7d1773fbb62445ab02f309591fb75b5f9ca3f170e0f4ce907955db07031038e
MD5 3507ab2cf6937673c089f2925dcda50e
BLAKE2b-256 bf5b4f84cb76f235406decaaec4bdb296ca9d0d64874e8eaa97dd91266b3c1d3

See more details on using hashes here.

File details

Details for the file PiML-0.6.0.post2-cp37-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.6.0.post2-cp37-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e09a59f6e53efe8ab2a3b0f653cdb2cf44b9a8dd1befd3eda1132d3d4c044c5d
MD5 91100ce8a6d061af06104e599df1bb15
BLAKE2b-256 995f98f6488d436cc1987d4870101290c5001f76661c6b80787dc8ba53b62c20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page