Skip to main content

One-stop time series analysis tool, supporting time series data preprocessing, feature engineering, model training, model evaluation, and model prediction.

Project description

PipelineTS

一站式时间序列分析工具,支持时序数据预处理、特征工程、模型训练、模型评估、模型预测等。

安装

conda install -c conda-forge prophet

python -m pip install PipelineTS

快速开始

from PipelineTS.dataset import LoadWebSales
init_data = LoadWebSales()[['date', 'type_a']]

valid_data = init_data.iloc[-30:, :]
data = init_data.iloc[:-30, :]

from PipelineTS.pipeline import PipelineTS
# list all models
PipelineTS.list_models()

from sklearn.metrics import mean_absolute_error
pipeline = PipelineTS(
    time_col='date', 
    target_col='type_a', 
    lags=30, 
    random_state=42, 
    metric=mean_absolute_error, 
    metric_less_is_better=True
)

# training all models
pipeline.fit(data, valid_df=valid_data)

# use best model to predict next 30 steps data point
res = pipeline.predict(30)

数据准备

# TODO

预处理

# TODO

特征工程

# TODO

模型训练

# TODO

模型评估

# TODO

模型预测

# TODO

模型部署

# TODO

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PipelineTS-0.1.5.tar.gz (21.0 kB view details)

Uploaded Source

Built Distribution

PipelineTS-0.1.5-py3-none-any.whl (35.8 kB view details)

Uploaded Python 3

File details

Details for the file PipelineTS-0.1.5.tar.gz.

File metadata

  • Download URL: PipelineTS-0.1.5.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for PipelineTS-0.1.5.tar.gz
Algorithm Hash digest
SHA256 8099131bf00e38ff46bbfe4ee4f721a9aac417b5a678f3875728c05c7860b8b1
MD5 d6bb0da6fbfe0e52c19a01d87bfff943
BLAKE2b-256 b0ccf81e177c65c9b7e1e8135a7c06f28a7c07ad09c695f3ffa1d623f4f6ea57

See more details on using hashes here.

File details

Details for the file PipelineTS-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: PipelineTS-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 35.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for PipelineTS-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2d29a7a9b971787300186fce9d1c8ebdfbe566289d8dd72276ad619b54ae95ad
MD5 1452c4473fc4a7180ef1b2b51ea67bb3
BLAKE2b-256 2a9d44aec43d7a5d3c2f7da80e16419b29922cdacfa3c77351ffeac165656e2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page