Skip to main content

One-stop time series analysis tool, supporting time series data preprocessing, feature engineering, model training, model evaluation, and model prediction.

Project description

PipelineTS

一站式时间序列分析工具,支持时序数据预处理、特征工程、模型训练、模型评估、模型预测等。

安装

conda install -c conda-forge prophet

python -m pip install PipelineTS

快速开始

from PipelineTS.dataset import LoadWebSales
init_data = LoadWebSales()[['date', 'type_a']]

valid_data = init_data.iloc[-30:, :]
data = init_data.iloc[:-30, :]

from PipelineTS.pipeline import PipelineTS
# list all models
PipelineTS.list_models()

from sklearn.metrics import mean_absolute_error
pipeline = PipelineTS(
    time_col='date', 
    target_col='type_a', 
    lags=30, 
    random_state=42, 
    metric=mean_absolute_error, 
    metric_less_is_better=True
)

# training all models
pipeline.fit(data, valid_df=valid_data)

# use best model to predict next 30 steps data point
res = pipeline.predict(30)

数据准备

# TODO

预处理

# TODO

特征工程

# TODO

模型训练

# TODO

模型评估

# TODO

模型预测

# TODO

模型部署

# TODO

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PipelineTS-0.2.0.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

PipelineTS-0.2.0-py3-none-any.whl (39.0 kB view details)

Uploaded Python 3

File details

Details for the file PipelineTS-0.2.0.tar.gz.

File metadata

  • Download URL: PipelineTS-0.2.0.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for PipelineTS-0.2.0.tar.gz
Algorithm Hash digest
SHA256 78c9d1bf85648a4db886d31a3a644b2d4d3c2ae71edd816403b25b802a7e6399
MD5 e4db6ae3e101a8b1fce0de6875845dac
BLAKE2b-256 f2cd7b6f5dd3de4fc0d27a78af50bc894a096967eb638e855b3b108d14b62bfd

See more details on using hashes here.

File details

Details for the file PipelineTS-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: PipelineTS-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 39.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for PipelineTS-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 72904e69731f9cce242b99461f7653a68ba5f6c54c3e955b1ef4d7e2efaac4ca
MD5 2b6a8b03b163142edd020ff007fca0f1
BLAKE2b-256 9f8b1166757c8df8ff833a37b0f38b2908ea5ba4f4efa8392f9ccb2ef9c5d9d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page