Skip to main content

One-stop time series analysis tool, supporting time series data preprocessing, feature engineering, model training, model evaluation, and model prediction.

Project description

PipelineTS

一站式时间序列分析工具,支持时序数据预处理、特征工程、模型训练、模型评估、模型预测等。

安装

conda install -c conda-forge prophet

python -m pip install PipelineTS

快速开始

from PipelineTS.dataset import LoadWebSales
init_data = LoadWebSales()[['date', 'type_a']]

valid_data = init_data.iloc[-30:, :]
data = init_data.iloc[:-30, :]

from PipelineTS.pipeline import PipelineTS
# list all models
PipelineTS.list_models()

from sklearn.metrics import mean_absolute_error
pipeline = PipelineTS(
    time_col='date', 
    target_col='type_a', 
    lags=30, 
    random_state=42, 
    metric=mean_absolute_error, 
    metric_less_is_better=True
)

# training all models
pipeline.fit(data, valid_df=valid_data)

# use best model to predict next 30 steps data point
res = pipeline.predict(30)

数据准备

# TODO

预处理

# TODO

特征工程

# TODO

模型训练

# TODO

模型评估

# TODO

模型预测

# TODO

模型部署

# TODO

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PipelineTS-0.2.3.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

PipelineTS-0.2.3-py3-none-any.whl (38.9 kB view details)

Uploaded Python 3

File details

Details for the file PipelineTS-0.2.3.tar.gz.

File metadata

  • Download URL: PipelineTS-0.2.3.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for PipelineTS-0.2.3.tar.gz
Algorithm Hash digest
SHA256 fafe13fecc96cb67e3e65a894b7cd02764707d981c0ddee6e8626cea1c242ce4
MD5 a164822e5c7a70aaafd2d95f27fc0e44
BLAKE2b-256 32edc7d33711cd94574fb646cf79915137fa561a327c95e81d137dcaa9e3d191

See more details on using hashes here.

File details

Details for the file PipelineTS-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: PipelineTS-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 38.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for PipelineTS-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ac98948116202b868e85446f43a21130ddb1c94e39a6c204bc8bb467b528f437
MD5 3f670b5a899a8b15a219406c7a11a475
BLAKE2b-256 0240c0dfe2a597713b8669618e162129cb6a942d113f0727c4d32a8eda03590b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page