Skip to main content

Pixiv API for Python (with 6.x AppAPI supported)

Project description

PixivPy Build Status PyPI version

Due to #158 reason, password login no longer exist. Please use api.auth(refresh_token=REFRESH_TOKEN) instead

To get refresh_token, see @ZipFile Pixiv OAuth Flow or OAuth with Selenium/ChromeDriver

Pixiv API for Python (with Auth supported)

  • [2021/11/23] Add illust_new for get latest works, see !189
  • [2021/03/02] Add user follow/unfollow, add novel API, see !161 (thanks @y-young, @invobzvr)
  • [2020/10/17] Use cloudscraper to bypass Cloudflare, fixed issue #140 (thanks @lllusion3469)
  • [2020/07/19] Add date specification for search_illust() (thanks Xdynix)
  • [2020/06/06] Add AppPixivAPI().search_novel() for novel search
  • [2019/09/23] 增加大陆地区AppAPI的免翻墙访问支持, release v3.5 (See example_bypass_sni.py, thanks @Notsfsssf)
  • [2019/09/03] Support new auth() check X-Client-Time/X-Client-Hash (thanks DaRealFreak, #83)
  • [2019/04/27] Support hosts proxy for AppAPI, which can use behind the Great Wall (See example_api_proxy.py)
  • [2017/04/18] Fix encoder BUG for illust_bookmark_add()/illust_bookmark_delete() params (thanks naplings)
  • [2017/01/05] Add PixivAPI().works() liked API illust_detail() for App-API (thanks Mapaler), release v3.3
  • [2016/12/17] Fixed encoding BUG for Public-API, see #26 (thanks Xdynix)
  • [2016/07/27] Now AppPixivAPI() can call without auth (thanks zzycami), check demo.py
  • [2016/07/20] New App-API (Experimental) for PixivIOSApp/6.0.9
  • [2016/07/11] Add new iOS 6.x API reference to Wiki
  • [2015/12/02] Add write API for favorite an user / illust, release v3.1
  • [2015/08/11] Remove SPAI and release v3.0 (pixivpy3) (Public-API with Search API)
  • [2015/05/16] As Pixiv deprecated SAPI in recent days, push new Public-API ranking_all
  • [2014/10/07] New framework, SAPI / Public-API supported (requests needed)

Use pip for installing:

pip install pixivpy --upgrade

Requirements: requests

Mikubill/PixivPy-Async: Async Pixiv API for Python 3

性能对比(需要高性能访问场景,可以参考这个脚本

@Mikubill: 简单进行了一下并发测试。(撞了N次Rate Limit...)

sg -> Singapore, jp -> Japan, unit -> second

Method Sync(10,sg) Async(10,sg) Sync(200,sg) Async(200,sg)
illust_detail 1.1209 0.8641 31.7041 2.4580
illust_ranking 1.0697 0.7936 28.4539 2.0693
user_illusts 0.8824 0.7505 28.3981 1.8199
user_detail 0.9628 0.7550 28.3055 1.7738
ugoira_metadata 0.8509 0.7459 29.5566 2.2331
works 1.1204 0.8912 32.2068 2.8513
me_following_works 1.1253 0.7845 39.3142 2.2785
ranking 1.0946 0.7944 39.6509 2.6548
latest_works 1.0483 0.8667 36.1992 2.5066
Method Sync(500,jp) Async(500,jp)
illust_detail 6.2178 0.6400
illust_ranking 6.4046 0.6119
user_illusts 7.6093 1.5266
user_detail 6.6759 0.5952
ugoira_metadata 6.5155 0.7577
works 13.3074 0.8619
me_following_works 24.2693 2.0835
ranking 21.4119 3.2805
latest_works 17.3502 2.7029

Projects base on pixivpy

  1. Mikubill/PixivPy-Async: Async Pixiv API for Python 3

Example:

from pixivpy3 import *

api = AppPixivAPI()
# api.login("username", "password")   # Not required

# get origin url
json_result = api.illust_detail(59580629)
illust = json_result.illust
print(">>> origin url: %s" % illust.image_urls['large'])

# get ranking: 1-30
# mode: [day, week, month, day_male, day_female, week_original, week_rookie, day_manga]
json_result = api.illust_ranking('day')
for illust in json_result.illusts:
    print(" p1 [%s] %s" % (illust.title, illust.image_urls.medium))

# next page: 31-60
next_qs = api.parse_qs(json_result.next_url)
json_result = api.illust_ranking(**next_qs)
for illust in json_result.illusts:
    print(" p2 [%s] %s" % (illust.title, illust.image_urls.medium))

Sniffer - App API

Sniffer - Public API

Using API proxy behind the Great Wall See detail in Issue#73

  1. Upgrade pixivpy >= v3.2.0: pip install pixivpy --upgrade
  2. Call api.download() like the below:
aapi = AppPixivAPI()
json_result = aapi.illust_ranking()
for illust in json_result.illusts[:3]:
    aapi.download(illust.image_urls.large)

Migrate pixivpy2 to pixivpy3

  1. Replace api.papi.* to api.*
  2. Change deprecated SPAI call to Public-API call
print(">>> new ranking_all(mode='daily', page=1, per_page=50)")
#rank_list = api.sapi.ranking("all", 'day', 1)
rank_list = api.ranking_all('daily', 1, 50)
print(rank_list)

# more fields about response: https://github.com/upbit/pixivpy/wiki/sniffer
ranking = rank_list.response[0]
for img in ranking.works:
	#print img.work
	print("[%s/%s(id=%s)] %s" % (img.work.user.name, img.work.title, img.work.id, img.work.image_urls.px_480mw))

About

  1. Blog: Pixiv Public-API (OAuth)分析

If you have any questions, please feel free to contact me: rmusique@gmail.com

Find Pixiv API in Objective-C? You might also like PixivAPI_iOS

API functions

App-API (6.0 - app-api.pixiv.net)

class AppPixivAPI(BasePixivAPI):

    # 返回翻页用参数
    def parse_qs(self, next_url):

    # 用户详情 
    def user_detail(self, user_id):

    # 用户作品列表 
    def user_illusts(self, user_id, type='illust'):

    # 用户收藏作品列表 
    def user_bookmarks_illust(self, user_id, restrict='public'):

    # 关注用户的新作
    # restrict: [public, private]
    def illust_follow(self, restrict='public'):

    # 作品详情 (无需登录,同PAPI.works)
    def illust_detail(self, illust_id):

    # 相关作品列表 
    def illust_related(self, illust_id):

    # 插画推荐 (Home - Main) 
    # content_type: [illust, manga]
    def illust_recommended(self, content_type='illust'):

    # 作品排行
    # mode: [day, week, month, day_male, day_female, week_original, week_rookie, day_manga]
    # date: '2016-08-01'
    # mode(r18榜单需登录): [day_r18, day_male_r18, day_female_r18, week_r18, week_r18g]
    def illust_ranking(self, mode='day', date=None, offset=None):

    # 趋势标签 (Search - tags) 
    def trending_tags_illust(self):

    # 搜索 (Search) 
    # search_target - 搜索类型
    #   partial_match_for_tags  - 标签部分一致
    #   exact_match_for_tags    - 标签完全一致
    #   title_and_caption       - 标题说明文
    # sort: [date_desc, date_asc, popular_desc] - popular_desc为会员的热门排序
    # duration: [within_last_day, within_last_week, within_last_month]
    # start_date, end_date: '2020-07-01'
    def search_illust(self, word, search_target='partial_match_for_tags', sort='date_desc', duration=None):

    # 搜索小说 (Search Novel)
    # search_target - 搜索类型
    #   partial_match_for_tags  - 标签部分一致
    #   exact_match_for_tags    - 标签完全一致
    #   text                    - 正文
    #   keyword                 - 关键词
    # sort: [date_desc, date_asc]
    # start_date/end_date: 2020-06-01 (最长1年)
    def search_novel(self, word, search_target='partial_match_for_tags', sort='date_desc', start_date=None, end_date=None):

    # 用户搜索
    def search_user(self, word, sort='date_desc', duration=None):

    # 作品收藏详情 
    def illust_bookmark_detail(self, illust_id):

    # 新增收藏
    def illust_bookmark_add(self, illust_id, restrict='public', tags=None):

    # 删除收藏
    def illust_bookmark_delete(self, illust_id):

    # 关注用户
    def user_follow_add(self, user_id, restrict='public'):

    # 取消关注用户
    def user_follow_delete(self, user_id):

    # 用户收藏标签列表
    def user_bookmark_tags_illust(self, restrict='public', offset=None):

    # Following用户列表 
    def user_following(self, user_id, restrict='public', offset=None):

    # Followers用户列表 
    def user_follower(self, user_id, filter='for_ios', offset=None):

    # 好P友 
    def user_mypixiv(self, user_id, offset=None):

    # 黑名单用户 
    def user_list(self, user_id, filter='for_ios', offset=None):

    # 获取ugoira信息
    def ugoira_metadata(self, illust_id):

    # 用户小说列表
    def user_novels(self, user_id, filter='for_ios', offset=None):

    # 小说系列详情
    def novel_series(self, series_id, filter='for_ios', last_order=None):

    # 小说详情
    def novel_detail(self, novel_id):

    # 小说正文
    def novel_text(self, novel_id):

    # 大家的新作 [illust, manga]
    def illust_new(self, content_type="illust", filter='for_ios', max_illust_id=None):

Usage:

aapi = AppPixivAPI()

# 作品推荐
json_result = aapi.illust_recommended()
print(json_result)
illust = json_result.illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

# 作品相关推荐
json_result = aapi.illust_related(57065990)
print(json_result)
illust = json_result.illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

# 作品相关推荐-下一页 (.parse_qs(next_url) 用法)
next_qs = aapi.parse_qs(json_result.next_url)
json_result = aapi.illust_related(**next_qs)
print(json_result)
illust = json_result.illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

# 用户详情
json_result = aapi.user_detail(660788)
print(json_result)
user = json_result.user
print("%s(@%s) region=%s" % (user.name, user.account, json_result.profile.region))

# 用户作品列表
json_result = aapi.user_illusts(660788)
print(json_result)
illust = json_result.illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

# 用户收藏列表
json_result = aapi.user_bookmarks_illust(2088434)
print(json_result)
illust = json_result.illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

# 2016-07-15 日的过去一周排行
json_result = aapi.illust_ranking('week', date='2016-07-15')
print(json_result)
illust = json_result.illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

# 关注用户的新作 (需要login)
json_result = aapi.illust_follow(req_auth=True)
print(json_result)
illust = json_result.illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

# 标签 "水着" 搜索
json_result = aapi.search_illust('水着', search_target='partial_match_for_tags')
print(json_result)
illust = json_result.illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

# 用户 "gomzi" 搜索
json_result = aapi.search_user("gomzi")
print(json_result)
illust = json_result.user_previews[0].illusts[0]
print(">>> %s, origin url: %s" % (illust.title, illust.image_urls['large']))

Public-API

PAPI.*

class PixivAPI(BasePixivAPI):

	# 作品详细
	def works(self, illust_id):

	# 用户资料
	def users(self, author_id):

	# 我的订阅
	def me_feeds(self, show_r18=1):

	# 获取收藏夹
	def me_favorite_works(self,page=1,per_page=50,image_sizes=['px_128x128', 'px_480mw', 'large']):

	# 添加收藏
	# publicity:  public, private
	def me_favorite_works_add(self, work_id, publicity='public'):

	# 删除收藏
	def me_favorite_works_delete(self, ids):

	# 关注用户
	# publicity:  public, private
	def me_favorite_users_follow(self, user_id, publicity='public'):

	# 用户作品
	# publicity:  public, private
	def users_works(self, author_id, page=1, per_page=30, publicity='public'):

	# 用户收藏
	# publicity:  public, private
	def users_favorite_works(self, author_id, page=1, per_page=30, publicity='public'):

	# 排行榜/过去排行榜
	# mode:
	#   daily - 每日
	#   weekly - 每周
	#   monthly - 每月
	#   male - 男性热门
	#   female - 女性热门
	#   original - 原创
	#   rookie - Rookie
	#   daily_r18 - R18每日
	#   weekly_r18 - R18每周
	#   male_r18
	#   female_r18
	#   r18g
	# page: 1-n
	# date: '2015-04-01' (仅过去排行榜)
	def ranking_all(self, mode='daily', page=1, per_page=50, date=None):

	# 搜索
	# query: 搜索的文字
	# page: 1-n
	# mode:
	#   text - 标题/描述
	#   tag - 非精确标签
	#   exact_tag - 精确标签
	#   caption - 描述
	# period (only applies to asc order):  
	#   all - 所有
	#   day - 一天之内
	#   week - 一周之内
	#   month - 一月之内
	# order:
	#   desc - 新顺序
	#   asc - 旧顺序
	def search_works(self, query, page=1, per_page=30, mode='text',
		period='all', order='desc', sort='date'):

Usage:

# 作品详细 PAPI.works
json_result = api.works(46363414)
print(json_result)
illust = json_result.response[0]
print( ">>> %s, origin url: %s" % (illust.caption, illust.image_urls['large']))

# 用户资料 PAPI.users
json_result = api.users(1184799)
print(json_result)
user = json_result.response[0]
print(user.profile.introduction)

# 我的订阅 PAPI.me_feeds
json_result = api.me_feeds(show_r18=0)
print(json_result)
ref_work = json_result.response[0].ref_work
print(ref_work.title)

# 我的收藏列表(private) PAPI.me_favorite_works
json_result = api.me_favorite_works(publicity='private')
print(json_result)
illust = json_result.response[0].work
print("[%s] %s: %s" % (illust.user.name, illust.title, illust.image_urls.px_480mw))

# 关注的新作品[New -> Follow] PAPI.me_following_works
json_result = api.me_following_works()
print(json_result)
illust = json_result.response[0]
print(">>> %s, origin url: %s" % (illust.caption, illust.image_urls['large']))

# 我关注的用户 PAPI.me_following
json_result = api.me_following()
print(json_result)
user = json_result.response[0]
print(user.name)

# 用户作品 PAPI.users_works
json_result = api.users_works(1184799)
print(json_result)
illust = json_result.response[0]
print(">>> %s, origin url: %s" % (illust.caption, illust.image_urls['large']))

# 用户收藏 PAPI.users_favorite_works
json_result = api.users_favorite_works(1184799)
print(json_result)
illust = json_result.response[0].work
print(">>> %s origin url: %s" % (illust.caption, illust.image_urls['large']))

# 获取收藏夹 PAPI.me_favorite_works
json_result = api.me_favorite_works()
print(json_result)
ids = json_result.response[0].id

# 添加收藏 PAPI.me_favorite_works_add
json_result = api.me_favorite_works_add(46363414)
print(json_result)

# 删除收藏 PAPI.me_favorite_works_delete
json_result = api.me_favorite_works_delete(ids)
print(json_result)

# 关注用户 PAPI.me_favorite_users_follow
json_result = api.me_favorite_users_follow(1184799)
print(json_result)

# 排行榜 PAPI.ranking(illust)
json_result = api.ranking('illust', 'weekly', 1)
print(json_result)
illust = json_result.response[0].works[0].work
print(">>> %s origin url: %s" % (illust.title, illust.image_urls['large']))

# 过去排行榜 PAPI.ranking(all, 2015-05-01)
json_result = api.ranking(ranking_type='all', mode='daily', page=1, date='2015-05-01')
print(json_result)
illust = json_result.response[0].works[0].work
print(">>> %s origin url: %s" % (illust.title, illust.image_urls['large']))

# 标题(text)/标签(exact_tag)搜索 PAPI.search_works
#json_result = api.search_works("五航戦 姉妹", page=1, mode='text')
json_result = api.search_works("水遊び", page=1, mode='exact_tag')
print(json_result)
illust = json_result.response[0]
print(">>> %s origin url: %s" % (illust.title, illust.image_urls['large']))

# 最新作品列表[New -> Everyone] PAPI.latest_works
json_result = api.latest_works()
print(json_result)
illust = json_result.response[0]
print(">>> %s url: %s" % (illust.title, illust.image_urls.px_480mw))

Make a release

Bump version in pixivpy3/__init__.py, rebuild dist/*

python3 setup.py sdist bdist_wheel
python2 setup.py bdist_wheel
twine upload dist/*

License

Feel free to use, reuse and abuse the code in this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PixivPy-3.6.2.tar.gz (15.7 kB view details)

Uploaded Source

Built Distributions

PixivPy-3.6.2-py3-none-any.whl (18.0 kB view details)

Uploaded Python 3

PixivPy-3.6.2-py2-none-any.whl (18.0 kB view details)

Uploaded Python 2

File details

Details for the file PixivPy-3.6.2.tar.gz.

File metadata

  • Download URL: PixivPy-3.6.2.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for PixivPy-3.6.2.tar.gz
Algorithm Hash digest
SHA256 9e207b4c3f76616900abbd0ebb9fb6e474bc4afea27b5663ab94b5160a286a6e
MD5 331832bdc1f2d5de87ad19f315ca94da
BLAKE2b-256 4edc763588e6b450ab24be752b54416a4cde9d379ae6d54dd9335cc42c9f7d84

See more details on using hashes here.

File details

Details for the file PixivPy-3.6.2-py3-none-any.whl.

File metadata

  • Download URL: PixivPy-3.6.2-py3-none-any.whl
  • Upload date:
  • Size: 18.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for PixivPy-3.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 30857d333e2f9386f34c415beb5f0aa367a3bb62a02c3b01dd101e7f9e06b638
MD5 adee50c3fdc45d4a04317901b42665ff
BLAKE2b-256 7090af01951deebf9c289600e5fb040700f3c8da73c4d6d51d9d4b44a1455e62

See more details on using hashes here.

File details

Details for the file PixivPy-3.6.2-py2-none-any.whl.

File metadata

  • Download URL: PixivPy-3.6.2-py2-none-any.whl
  • Upload date:
  • Size: 18.0 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for PixivPy-3.6.2-py2-none-any.whl
Algorithm Hash digest
SHA256 3046d01cba9c772d6b34ccb520597cd69e7cb4692e816d3e353cf681a4dfdf7c
MD5 cd9e742c9d500b84208e90d6fe33fd21
BLAKE2b-256 dceebf9e54ee09e696dba499347790160264a035168b1913a889957dc4e4c13a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page