This package directly gives you output performance on 13 different algorithms
Project description
- The best thing about this package is that you don’t have to train and predict every
classification or regression algorithm to check performance.
- This package directly gives you output performance on 13 different algorithms.
For Classification
from Pratik_model import smart_classifier
model = smart_classifier(x,y)
model.accuracy_score()
model.classification_report()
model.confusion_matrix()
model.cross_validation()
model.mean_absolute_error()
model.precision_score()
model.recall_score()
model.mean_absolute_error()
model.mean_absolute_error()
model.mean_squared_error()
model.cross_validation()
For Regression
from Pratik_model import smart_regressor
model=smart_regressor(x,y)
model.r2_score()
model.mean_absolute_error()
model.mean_absolute_error()
model.mean_squared_error()
model.cross_validation()
model.overfitting()
For more details check Source code .
First Release
0.0.2 (29/3/2022)
Thank You!!.
License-File: LICENSE.txt
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Pratik_model-0.0.9.tar.gz
(16.3 kB
view details)
File details
Details for the file Pratik_model-0.0.9.tar.gz
.
File metadata
- Download URL: Pratik_model-0.0.9.tar.gz
- Upload date:
- Size: 16.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6eb793e4361af851833976e86b295dd7272cd73f915f41c0e8cbcc3e54f74b65 |
|
MD5 | 10eeb86b1933ed680cfc8e821336fce2 |
|
BLAKE2b-256 | a3f2c885f880203a9ef8586060b8278dfc045a1c01ff549aca213fa18db5b3c6 |