Skip to main content

This package directly gives you output performance on 13 different algorithms

Project description

- The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.

- This package directly gives you output performance on 13 different algorithms.

How to use it -
For Classification
x= Independent variables
y= Dependent variables

* From Pratik_model import smart_classifier
* model = smart_classifier(x,y)
* model.accuracy_score()
* model.classification_report()
* model.confusion_matrix()
* model.cross_validation()
* model.mean_absolute_error()
* model.precision_score()
* model.recall_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()

For Regression -

* From Pratik_model import smart_regressor
* model=smart_regressor(x,y)
* model.r2_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()
* model.overfitting()

Check Pratik_Model_Package.ipynb file on Github for practical code.

Pratik_model for Classification:
It will check the performance on this Classification models:
- Passive Aggressive Classifier
- Decision Tree Classifier
- Random Forest Classifier
- Extra Trees Classifier
- Logistic Regression
- Ridge Classifier
- K Neighbors Classifier
- Support Vector Classification
- Naive Bayes Classifier
- LGBM Classifier
- CatBoost Classifier
- XGB Classifier

And for classification problems Pratik_model can give the output of:
- Accuracy Score.
- Classification Report
- Confusion Matrix
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)
- Precision Score
- Recall Score

Pratik_model for Regression:
Similarly, It will check performance on this Regression model:
- Passive Aggressive Regressor
- Gradient Boosting Regressor
- Decision Tree Regressor
- Random Forest Regressor
- Extra Trees Regressor
- Lasso Regression
- K Neighbors Regressor
- Linear Regression
- Support Vector Regression
- LGBM Regressor
- CatBoost Regressor
- XGB Regressor

And for Regression problem Pratik_model
can give an output of:
- R2 Score.
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)


First Release
0.0.7 (29/3/2022)

Thank You!!.

License-File: LICENSE.txt

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Pratik_model-0.1.1.tar.gz (16.2 kB view details)

Uploaded Source

File details

Details for the file Pratik_model-0.1.1.tar.gz.

File metadata

  • Download URL: Pratik_model-0.1.1.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for Pratik_model-0.1.1.tar.gz
Algorithm Hash digest
SHA256 7d44a5c17a51f1710141779b4b49f007026b32b2d687d73d3551fb54f8af7476
MD5 acf4545b747e6aa34ce47bce81aed8fa
BLAKE2b-256 cc130e68ff34f0f66ed196194f2266fc7c7d77eba0ffd4fd9f9a12d4307ad202

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page