Skip to main content

This package directly gives you output performance on 13 different algorithms

Project description

- The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.

- This package directly gives you output performance on 13 different algorithms.

How to use it -
For Classification
x= Independent variables
y= Dependent variables

* From Pratik_model import smart_classifier
* model = smart_classifier(x,y)
* model.accuracy_score()
* model.classification_report()
* model.confusion_matrix()
* model.cross_validation()
* model.mean_absolute_error()
* model.precision_score()
* model.recall_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()

For Regression -

* From Pratik_model import smart_regressor
* model=smart_regressor(x,y)
* model.r2_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()
* model.overfitting()

Check Pratik_Model_Package.ipynb file on Github for practical code.

Pratik_model for Classification:
It will check the performance on this Classification models:
- Passive Aggressive Classifier
- Decision Tree Classifier
- Random Forest Classifier
- Extra Trees Classifier
- Logistic Regression
- Ridge Classifier
- K Neighbors Classifier
- Support Vector Classification
- Naive Bayes Classifier
- LGBM Classifier
- CatBoost Classifier
- XGB Classifier

And for classification problems Pratik_model can give the output of:
- Accuracy Score.
- Classification Report
- Confusion Matrix
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)
- Precision Score
- Recall Score

Pratik_model for Regression:
Similarly, It will check performance on this Regression model:
- Passive Aggressive Regressor
- Gradient Boosting Regressor
- Decision Tree Regressor
- Random Forest Regressor
- Extra Trees Regressor
- Lasso Regression
- K Neighbors Regressor
- Linear Regression
- Support Vector Regression
- LGBM Regressor
- CatBoost Regressor
- XGB Regressor

And for Regression problem Pratik_model
can give an output of:
- R2 Score.
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)


First Release
0.0.7 (29/3/2022)

Thank You!!.

License-File: LICENSE.txt

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Pratik_model-0.1.2.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

Pratik_model-0.1.2-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file Pratik_model-0.1.2.tar.gz.

File metadata

  • Download URL: Pratik_model-0.1.2.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for Pratik_model-0.1.2.tar.gz
Algorithm Hash digest
SHA256 99b2752276d65765e434d91704cad71b43c327d1dcff795d4c3ed9887e41f0d5
MD5 03b46e017661901da83b6404fc01bcc0
BLAKE2b-256 39aa9eb31ca0b5c04dd7de7db0246c8e84e5d0e80b0b201e248e0ea367d5ebc0

See more details on using hashes here.

File details

Details for the file Pratik_model-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: Pratik_model-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for Pratik_model-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 49b77a49cb10f7af618644dbbdc9f8ab1a795f142a4705baefc43c67b708a64a
MD5 d4e3a765447f9727eb61dae1c1bea6f2
BLAKE2b-256 f33e93a0d0b5f81b7b853298fcab2c1bad0adfce7e705eda9c812bc27c1b2808

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page