This package directly gives you output performance on 13 different algorithms
Project description
- The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.
- This package directly gives you output performance on 13 different algorithms.
How to use it -
For Classification
x= Independent variables
y= Dependent variables
* From Pratik_model import smart_classifier
* model = smart_classifier(x,y)
* model.accuracy_score()
* model.classification_report()
* model.confusion_matrix()
* model.cross_validation()
* model.mean_absolute_error()
* model.precision_score()
* model.recall_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()
For Regression -
* From Pratik_model import smart_regressor
* model=smart_regressor(x,y)
* model.r2_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()
* model.overfitting()
Check Pratik_Model_Package.ipynb file on Github for practical code.
Pratik_model for Classification:
It will check the performance on this Classification models:
- Passive Aggressive Classifier
- Decision Tree Classifier
- Random Forest Classifier
- Extra Trees Classifier
- Logistic Regression
- Ridge Classifier
- K Neighbors Classifier
- Support Vector Classification
- Naive Bayes Classifier
- LGBM Classifier
- CatBoost Classifier
- XGB Classifier
And for classification problems Pratik_model can give the output of:
- Accuracy Score.
- Classification Report
- Confusion Matrix
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)
- Precision Score
- Recall Score
Pratik_model for Regression:
Similarly, It will check performance on this Regression model:
- Passive Aggressive Regressor
- Gradient Boosting Regressor
- Decision Tree Regressor
- Random Forest Regressor
- Extra Trees Regressor
- Lasso Regression
- K Neighbors Regressor
- Linear Regression
- Support Vector Regression
- LGBM Regressor
- CatBoost Regressor
- XGB Regressor
And for Regression problem Pratik_model
can give an output of:
- R2 Score.
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)
First Release
0.0.7 (29/3/2022)
Thank You!!.
License-File: LICENSE.txt
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Pratik_model-0.1.2.tar.gz
(16.2 kB
view details)
Built Distribution
File details
Details for the file Pratik_model-0.1.2.tar.gz
.
File metadata
- Download URL: Pratik_model-0.1.2.tar.gz
- Upload date:
- Size: 16.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 99b2752276d65765e434d91704cad71b43c327d1dcff795d4c3ed9887e41f0d5 |
|
MD5 | 03b46e017661901da83b6404fc01bcc0 |
|
BLAKE2b-256 | 39aa9eb31ca0b5c04dd7de7db0246c8e84e5d0e80b0b201e248e0ea367d5ebc0 |
File details
Details for the file Pratik_model-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: Pratik_model-0.1.2-py3-none-any.whl
- Upload date:
- Size: 16.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 49b77a49cb10f7af618644dbbdc9f8ab1a795f142a4705baefc43c67b708a64a |
|
MD5 | d4e3a765447f9727eb61dae1c1bea6f2 |
|
BLAKE2b-256 | f33e93a0d0b5f81b7b853298fcab2c1bad0adfce7e705eda9c812bc27c1b2808 |