Skip to main content

This package directly gives you output performance on 12 different algorithms

Project description

Pratik_model

  • The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.
  • This package directly gives you output performance on 13 different algorithms.

How to use it - For Classification x= Independent variables y= Dependent variables

  • From Pratik_model import smart_classifier
  • model = smart_classifier(x,y)
  • model.accuracy_score()
  • model.classification_report()
  • model.confusion_matrix()
  • model.cross_validation()
  • model.mean_absolute_error()
  • model.precision_score()
  • model.recall_score()
  • model.mean_absolute_error()
  • model.mean_absolute_error()
  • model.mean_squared_error()
  • model.cross_validation()

For Regression -

  • From Pratik_model import smart_regressor
  • model=smart_regressor(x,y)
  • model.r2_score()
  • model.mean_absolute_error()
  • model.mean_absolute_error()
  • model.mean_squared_error()
  • model.cross_validation()
  • model.overfitting()

Check Pratik_Model_Package.ipynb file on Github for practical code.

Pratik_model for Classification: It will check the performance on this Classification models:

  • Passive Aggressive Classifier
  • Decision Tree Classifier
  • Random Forest Classifier
  • Extra Trees Classifier
  • Logistic Regression
  • Ridge Classifier
  • K Neighbors Classifier
  • Support Vector Classification
  • Naive Bayes Classifier
  • LGBM Classifier
  • CatBoost Classifier
  • XGB Classifier

And for classification problems Pratik_model can give the output of:

  • Accuracy Score.
  • Classification Report
  • Confusion Matrix
  • Cross validation (Cross validation score)
  • Mean Absolute Error
  • Mean Squared Error
  • Overfitting (will give accuracy of training and testing data.)
  • Precision Score
  • Recall Score

Pratik_model for Regression: Similarly, It will check performance on this Regression model:

  • Passive Aggressive Regressor
  • Gradient Boosting Regressor
  • Decision Tree Regressor
  • Random Forest Regressor
  • Extra Trees Regressor
  • Lasso Regression
  • K Neighbors Regressor
  • Linear Regression
  • Support Vector Regression
  • LGBM Regressor
  • CatBoost Regressor
  • XGB Regressor

And for Regression problem Pratik_model can give an output of:

  • R2 Score.
  • Cross validation (Cross validation score)
  • Mean Absolute Error
  • Mean Squared Error
  • Overfitting (will give accuracy of training and testing data.)

First Release 0.0.7 (29/3/2022)

Thank You!!.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

Pratik_model-0.1.3-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file Pratik_model-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: Pratik_model-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for Pratik_model-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c99be71107e8aebc6d754d2f75f13449703a57c6ff7b436c4637b91b5e9df152
MD5 6c29ae6dcd9360c3f505dfcb6e0ce783
BLAKE2b-256 45acad8ff627ad898626aa1ef906822f4f1fe058acb2a819bd71c772f1782af2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page