Skip to main content

This package directly gives you output performance on 12 different algorithms

Project description

Pratik_model

  • The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.
  • This package directly gives you output performance on 13 different algorithms.

How to use it - For Classification x= Independent variables y= Dependent variables

  • From Pratik_model import smart_classifier
  • model = smart_classifier(x,y)
  • model.accuracy_score()
  • model.classification_report()
  • model.confusion_matrix()
  • model.cross_validation()
  • model.mean_absolute_error()
  • model.precision_score()
  • model.recall_score()
  • model.mean_absolute_error()
  • model.mean_absolute_error()
  • model.mean_squared_error()
  • model.cross_validation()

For Regression -

  • From Pratik_model import smart_regressor
  • model=smart_regressor(x,y)
  • model.r2_score()
  • model.mean_absolute_error()
  • model.mean_absolute_error()
  • model.mean_squared_error()
  • model.cross_validation()
  • model.overfitting()

Check Pratik_Model_Package.ipynb file on Github for practical code.

Pratik_model for Classification: It will check the performance on this Classification models:

  • Passive Aggressive Classifier
  • Decision Tree Classifier
  • Random Forest Classifier
  • Extra Trees Classifier
  • Logistic Regression
  • Ridge Classifier
  • K Neighbors Classifier
  • Support Vector Classification
  • Naive Bayes Classifier
  • LGBM Classifier
  • CatBoost Classifier
  • XGB Classifier

And for classification problems Pratik_model can give the output of:

  • Accuracy Score.
  • Classification Report
  • Confusion Matrix
  • Cross validation (Cross validation score)
  • Mean Absolute Error
  • Mean Squared Error
  • Overfitting (will give accuracy of training and testing data.)
  • Precision Score
  • Recall Score

Pratik_model for Regression: Similarly, It will check performance on this Regression model:

  • Passive Aggressive Regressor
  • Gradient Boosting Regressor
  • Decision Tree Regressor
  • Random Forest Regressor
  • Extra Trees Regressor
  • Lasso Regression
  • K Neighbors Regressor
  • Linear Regression
  • Support Vector Regression
  • LGBM Regressor
  • CatBoost Regressor
  • XGB Regressor

And for Regression problem Pratik_model can give an output of:

  • R2 Score.
  • Cross validation (Cross validation score)
  • Mean Absolute Error
  • Mean Squared Error
  • Overfitting (will give accuracy of training and testing data.)

First Release 0.0.7 (29/3/2022)

Thank You!!.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Pratik_model-0.1.4.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

Pratik_model-0.1.4-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file Pratik_model-0.1.4.tar.gz.

File metadata

  • Download URL: Pratik_model-0.1.4.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for Pratik_model-0.1.4.tar.gz
Algorithm Hash digest
SHA256 8a5e60dcb57f6c79559ae7ab6b449af6e72dcf2f96d15373002e95a4deaeee9d
MD5 09ff651a1d3534799c0fd2035906c207
BLAKE2b-256 be959880318c072ddb52e8066ae6e4cd8354dcccc07832883b759436d3b50d56

See more details on using hashes here.

File details

Details for the file Pratik_model-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: Pratik_model-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for Pratik_model-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 4ae3e9aadf3d0b9f217dccd1e3d456e5815fe9683296ab73876a8a3e3470a9f5
MD5 67c2815810a6d04431d309a3d532ce80
BLAKE2b-256 53d9a11e7ca0fabb820ec95b1269ec0aeef90577f716597993f03b156de30006

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page