Skip to main content

Audio processing

Project description

ProcessAudio

Libreria python para hacer data augmentation en audios y/o extraer caracteristicas a audios


Installation

pip install ProcessAudio

Description

A ProcessAudio object should be created and use its attributes.

This library have tree main functions:

  • Features: Extract features from audio
  • AudioAugmentation: Augment audio in different ways
  • AllDataAugmentation: Augment audio in different ways and extract features
  • Util: Read audio and denoise audio
  • Split: Split audio in n seconds or at desired cut points
  • Graph: Graph spectrogram or log_mel_spectrogram for an audio

Back To Top ↥

Features methods

  • set_data(data_audio:str="<path_audio_file>): Set data to extract features
  • get_croma(): Extract croma features
  • get_mfcc(): Extract mfcc features
  • get_rmse(): Extract rmse features
  • get_centroide_espectral(): Extract spectral centroid features
  • get_rolloff(): Extract spectral rolloff features
  • get_cruce_por_cero(): Extract zero crossing rate features
  • get_ancho_banda_espectral(): Extract spectral bandwidth features
  • get_tonnetz(): Extract tonnetz features
  • build_basic(): Extract a basic features in a list

Back To Top ↥

AudioAugmentation methods

  • loudness(): Apply loudness to audio file creating a new data
  • add_mask(): Apply mask to audio file creating a new data
  • pitch(): Apply pitch to audio file creating a new data
  • get_original(): Get original audio file
  • add_crop(): Apply crop to audio file creating a new data
  • add_noise(): Apply noise to audio file creating a new data
  • add_noise2(): Apply noise to audio file creating a new data
  • shift(): Apply shift to audio file creating a new data
  • stretch(): Apply stretch to audio file creating a new data
  • speed(): Apply speed to audio file creating a new data
  • normalizer(): Apply normalizer to audio file creating a new data
  • polarizer(): Apply polarizer to audio file creating a new data
  • write_audio_file(): Write audio file
  • plot_time_series(): Plot time series

Back To Top ↥

AllDataAugmentation methods

  • build_all(extract_features: bool): Augment audio and extract features if extract_features is True

Back To Top ↥

Util methods

  • read_audio(file_path: str, force_convert_wav: bool): Read Read audio, if the format isn't wav, the method convert that before to read
  • audio_convert_wav(audio_path: str, output_path: str): Convert audio to wav format
  • denoise_audio(data: np.array, sr: int): remove the noise of audio data

Back To Top ↥

Split methods

  • split(self, start: int, end: int, save: bool): Split audio in start to end, if you need seconds, start and end have to multiples of 1000
  • split_by_seconds(self, seconds: int, save: bool): Cut audio en segments of parameter and save each one

Back To Top ↥

Graph methods

  • spectrogram(data: np.array, sr: int, output_path: str, title: str): Create the spectrogram for audio data
  • log_mel_spectrogram(data: np.array, sr: int, output_path: str, title: str): Create log mel spectrogram for audio data

Back To Top ↥

Usage

Example Features

import os
from ProcessAudio.Features import Features

filepath = os.path.dirname(os.path.abspath(__file__)) + os.sep
path_file = filepath + "demo" + os.sep + "dat_92.wav"

features = Features()
features.set_data(path_file)
DATA = features.build_basic() # Extract all features
print(DATA)
print(len(DATA))  

Back To Top ↥

Example AudioAugmentation

import os
from ProcessAudio.AudioAugmentation import AudioAugmentation

filepath = os.path.dirname(os.path.abspath(__file__)) + os.sep
path_file = filepath + "demo" + os.sep + "dat_92.wav"
folder_save = filepath + "new_audios" + os.sep

aumentation = AudioAugmentation(audio_file=path_file, save=folder_save)
audio_con_ruido = aumentation.add_noise(factor_ruido=0.05)
audio_normalizer = aumentation.normalizer()
audio_loudness = aumentation.loudness()

Back To Top ↥

Example AllDataAugmentation

import os
from ProcessAudio.AllDataAugmentation import AllDataAugmentation

filepath = os.path.dirname(os.path.abspath(__file__)) + os.sep
path_file = filepath + "demo" + os.sep + "dat_92.wav"
folder_save = filepath + "new_audios" + os.sep

aumentation = AllDataAugmentation(path_file, path_save=folder_save, label=["cero", "uno"])
data, label = aumentation.build_all(extract_features=True)
print(len(data), len(label))
print(len(data[0]), label[0])

Back To Top ↥

Citing

If you want to cite ProcessAudio in an academic paper, there are two ways to do it.

  • APA:

    WISROVI, W.S.R.V. (2022). Python library to augment audio data and/or extract audio features (Version 0.22.11) [Computer Software]. https://github.com/wisrovi/ProcessAudio

  • BibTex:

    @software{WISROVI_Instrument_Classifier_2022, author = {WISROVI, William Steve Rodríguez Villamizar}, month = {10}, title = {{Python library to augment audio data and/or extract audio features}}, URL = {https://github.com/wisrovi/ProcessAudio}, version = {0.22.11}, year = {2022} }


Back To Top ↥

License

GPLv3 License


Back To Top ↥

Support:

wisrovirod8

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ProcessAudio-0.24.5.tar.gz (21.4 kB view details)

Uploaded Source

File details

Details for the file ProcessAudio-0.24.5.tar.gz.

File metadata

  • Download URL: ProcessAudio-0.24.5.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.14

File hashes

Hashes for ProcessAudio-0.24.5.tar.gz
Algorithm Hash digest
SHA256 f8e6c2861bc267dd94185b54dd796cb9b6ebd89a85659a62e7b6552f37f84476
MD5 0e37ccd9cbd7e16de341e50d8f156304
BLAKE2b-256 327cd7bc693c3445c34b5b48a6f4ae4792eb6a972b9846a8ebfc674402ca2ed9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page