Skip to main content

Implementation of ProcessPLS in Python

Project description

ProcessPLS

An Implementation of ProcessPLS in Python

Code Writter

Implementation by Sin Yong Teng. Radboud University Nijmegen, the Netherlands.

Implementation

In this code implementation, the sklearn syntax is used. Furthermore, the ProcessPLS algorithm has been made to be represented in directed graphs data structure. This allows for more flexibility to be used with graph theory routines.

Functions

Install the library

pip install processPLS

Get the data

from processPLS.model import *
from processPLS.data import *
X,Y,matrix=ValdeLoirData() #Get the data conviniently

Alternatively, you can import the data yourself like this:

df=pd.read_csv(r'.\ValdeLoirData.csv')
df=df.drop(columns=df.columns[0])
smell_at_rest=df.iloc[:,:5]
view=df.iloc[:,5:8]
smell_after_shaking=df.iloc[:,8:18]
tasting=df.iloc[:,18:27]
global_quality=df.iloc[:,27]

X={
'Smell at Rest':smell_at_rest,
"View":view,
"Smell after Shaking":smell_after_shaking,
"Tasting":tasting,
}

Y={"Global Quality":global_quality}

matrix = pd.DataFrame(
[
[0,0,0,0,0], 
[1,0,0,0,0],
[1,1,0,0,0],
[1,1,1,0,0],
[1,1,1,1,0],
],
index=list(X.keys())+list(Y.keys()),
columns=list(X.keys())+list(Y.keys())
)

Call and Fit the Process PLS model

import matplotlib.pyplot as plt
model = ProcessPLS()
model.fit(X,Y,matrix)
model.plot
plt.show()

Main Function Arguments

Process_PLS(cv=RepeatedKFold(n_splits=5,n_repeats=2,random_state=999),scoring='neg_mean_squared_error',max_lv=30,overwrite_lv=False,inner_forced_lv=None,outer_forced_lv=None,name=None)

'''
This function sets up the processPLS model.

cv= cross validation method  (follows sklearn syntax)

scoring= loss function/ scoring function (follows sklearn syntax)

max_lv= maximum numbers of latent variable (lv) for all SIMPLS models within ProcessPLS

overwrite_LV= (True/False) A boolean to set whether inner_forced_lv and outer_forced_lv should be used instead of automatically selecting latent variables

inner_forced_lv= (dict) a specific key value combination of number of LVs to forced into the inner model. Argument overwrite_LV must be set to True for this to be used. Example input:
 inner_forced_lv={
  'Smell at Rest':None,
  "View":3,
  "Smell after Shaking":6,
  "Tasting":8,
  "Global Quality":13
  }

  inner_forced_lv= (dict) a specific key value combination of number of LVs to forced into the outer model. Argument overwrite_LV must be set to True for this to be used. Example input:

  outer_forced_lv={
  'Smell at Rest':3,
  "View":3,
  "Smell after Shaking":2,
  "Tasting":5,
  "Global Quality":3
  }

name: (string) Optional name of model.

'''

ValdeLoirData(original=False)

'''
This function gets the data for Valde Loir Dataset

original==False:  The function returns X (dataframe in dict), Y (dataframe dict), and matrix (dataframe). matrix is the adjacency matrix for the graph connections.

original==True:  The function returns the raw data (dataframe) with both X and Y combined within


'''

Inference/ Prediction for New Data

y_pred= model.predict(Xnew)

Reproducibility

This implementation provides exactly the same output as the MATLAB version of ProcessPLS.

ProcessPLS

Reference to Original Paper:

van Kollenburg, G., Bouman, R., Offermans, T., Gerretzen, J., Buydens, L., van Manen, H.J. and Jansen, J., 2021. Process PLS: Incorporating substantive knowledge into the predictive modelling of multiblock, multistep, multidimensional and multicollinear process data. Computers & Chemical Engineering, 154, p.107466.

For MATLAB Implementation, see this repository written by Tim Offermans. https://gitlab.science.ru.nl/toffermans/matlab-process-pls/-/tree/main/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ProcessPLS-1.4-py3-none-any.whl (310.0 kB view details)

Uploaded Python 3

File details

Details for the file ProcessPLS-1.4-py3-none-any.whl.

File metadata

  • Download URL: ProcessPLS-1.4-py3-none-any.whl
  • Upload date:
  • Size: 310.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.0

File hashes

Hashes for ProcessPLS-1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 1f827ceb3dcc0fa6a35dccc33e8f4c21207e3014e9f53081418120b73026166e
MD5 71f48981114a8c6254602d00129d88f7
BLAKE2b-256 daa726a20a9c0e51c126944a63f4c267f54262cbf686522a9cc51f055511226d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page